Suppr超能文献

受关节软骨启发的超强韧生物基聚氨酯纳米纤维膜

Articular Cartilage Inspired Ultra-Strong and Tough Bio-Based Polyurethane Nanofiber Membranes.

作者信息

Li Xueqin, Cheng Ningbo, Lin Yanyan, Zhang Bin, Yang Yinzhi, Qu Chengran, Wang Xianfeng, Yu Jianyong, Ding Bin

机构信息

State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, China.

Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.

出版信息

Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202505034. doi: 10.1002/anie.202505034. Epub 2025 Jun 25.

Abstract

Bio-based polyurethanes are promising sustainable elastomers whose polymeric network structure has a decisive impact on their properties. However, existing bio-based polyurethanes face challenges in simultaneously enhancing mechanical strength and toughness. Inspired by the multilevel heterogeneous structure of articular cartilage, we propose a bionic design strategy of rigid-flexible coupled supramolecular cross-linking networks to prepare bio-based polyurethane elastomers with enhanced strength and toughness. By incorporating the asymmetric coupling of rigid furan rings and flexible aliphatic side chains into the molecular chains, a dynamic hydrogen bond network with a gradient distribution of bond energy was constructed, achieving uniform microphase separation between the soft phase (amorphous) and the hard phase (crystalline). Nanofiber membranes were fabricated by rigid-flexible coupled polyurethane electrospinning, where the microphase-separated structure is further transformed into dynamic crystalline domains. Under external force, multilevel energy dissipation is achieved through the breaking and controllable recombination of hydrogen bonds within the crystalline domain. resulting in polyurethane nanofiber membranes with significantly enhanced mechanical strength and toughness (fracture strength: 31.37 MPa, fracture strain: 731.04%, toughness: 102.13 MJ m). This network design strategy expands the potential of bio-based elastomers in smart wearable textiles, flexible electronic devices, and biomedical applications, thereby advancing the development of sustainable high-performance polymers.

摘要

生物基聚氨酯是很有前景的可持续弹性体,其聚合物网络结构对其性能具有决定性影响。然而,现有的生物基聚氨酯在同时提高机械强度和韧性方面面临挑战。受关节软骨多级异质结构的启发,我们提出了一种刚柔耦合超分子交联网络的仿生设计策略,以制备具有增强强度和韧性的生物基聚氨酯弹性体。通过将刚性呋喃环和柔性脂肪族侧链的不对称耦合引入分子链中,构建了具有键能梯度分布的动态氢键网络,实现了软相(非晶态)和硬相(晶态)之间的均匀微相分离。通过刚柔耦合聚氨酯静电纺丝制备了纳米纤维膜,其中微相分离结构进一步转变为动态晶区。在外力作用下,通过晶区内氢键的断裂和可控重组实现多级能量耗散。从而得到机械强度和韧性显著增强的聚氨酯纳米纤维膜(断裂强度:31.37MPa,断裂应变:731.04%,韧性:102.13MJ/m)。这种网络设计策略拓展了生物基弹性体在智能可穿戴纺织品、柔性电子器件和生物医学应用中的潜力,从而推动了可持续高性能聚合物的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验