Gong Ruizhi, Liang Guotao, Yi Tengfei, Liu Baoxuan, Srinivasan Vennila, Dong Xiaoying, Li Yongfeng
Key Laboratory of National Forestry and Grassland Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
Shandong Cork Oak Industrial Technology Research Institute Co., Ltd, Jining 272100, China.
Int J Biol Macromol. 2025 Sep;321(Pt 4):146483. doi: 10.1016/j.ijbiomac.2025.146483. Epub 2025 Aug 5.
The UV crosslinking technology for waterborne polyurethane (WPU) coatings integrates the environmental benefits of WPU with the superior performance characteristics of solvent-based polyurethanes, including rapid film-forming ability, exceptional mechanical properties, and superior chemical resistance. However, attaining an optimal balance between mechanical strength and toughness remains a critical challenge. To address this limitation, the present study proposes a multi-scale interface engineering strategy featuring synergistic design at molecular and structural scales. Through the molecular-scale interface design, trimethylolpropane (TMP) and 2-hydroxyethyl methacrylate (HEMA) were employed to introduce crosslinking structures and CC groups into prepolymer chains respectively, significantly enhancing the crosslinking density of polyurethane macromolecular chains, thereby improving the coating's mechanical strength and solvent resistance. Further structural-scale interface design incorporated UV-crosslinkable nanocellulose entanglement networks into the resin crosslinking system, forming a dual-network structure with multi-scale interfacial bonding. This effectively leveraged multi-scale interface effects, resulting in the optimized coating (WPUA-T-K) demonstrated 32.21 % strength and 11.43 % modulus improvements over commercial UV coatings, with 22.06 times higher elongation (41.48 % vs 1.88 %), successfully achieving strength-toughness synergy. Additionally, the coating demonstrated comparable mechanical properties, chemical resistance, and curing time to commercial waterborne UV coatings. This strategy provides new insights for the design, synthesis, and modification of WPU wood coatings.
水性聚氨酯(WPU)涂料的紫外线交联技术将WPU的环境优势与溶剂型聚氨酯的卓越性能特性相结合,包括快速成膜能力、出色的机械性能和优异的耐化学性。然而,在机械强度和韧性之间实现最佳平衡仍然是一项关键挑战。为解决这一限制,本研究提出了一种多尺度界面工程策略,其特点是在分子和结构尺度上进行协同设计。通过分子尺度的界面设计,分别采用三羟甲基丙烷(TMP)和甲基丙烯酸羟乙酯(HEMA)将交联结构和CC基团引入预聚物链中,显著提高了聚氨酯大分子链的交联密度,从而提高了涂层的机械强度和耐溶剂性。进一步的结构尺度界面设计将可紫外线交联的纳米纤维素缠结网络引入树脂交联体系,形成具有多尺度界面键合的双网络结构。这有效地利用了多尺度界面效应,使得优化后的涂层(WPUA-T-K)相比商业紫外线涂料,强度提高了32.21%,模量提高了11.43%,伸长率提高了22.06倍(41.48%对1.88%),成功实现了强度-韧性协同。此外,该涂层在机械性能、耐化学性和固化时间方面与商业水性紫外线涂料相当。该策略为WPU木器涂料的设计、合成和改性提供了新的见解。