Liu Jianhua, Yao Junxiong, Mu Ruping, Mao Xinyi, Li Haihua, Sun Jianqi, Huang Jifeng, Feng Qiang, Cao Xiaohua, Wang Jianguo, Huang Huanan
College of Chemistry and Chemical Engineering; Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, 332005, China.
College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202509104. doi: 10.1002/anie.202509104. Epub 2025 Jul 2.
Achieving pure organic room temperature phosphorescence (RTP) materials is of great interest due to their applications in optoelectronics. However, improving RTP in pure organic materials by controlling triplet excitons is challenging due to their complex relaxation processes. Therefore, exploring effective strategies to modulate triplet excitons is crucial. Herein, we propose a N─B─N isomerization strategy to enhance RTP performance. Two isomers containing HN─B─NH units (B{1,2-(NH)CH}), namely 1,1-DB and 1,2-DB, were synthesized to explore their RTP properties. Intriguingly, 1,1-DB exhibited excellent RTP, whereas 1,2-DB displayed negligible phosphorescence. The N─B─N unit in 1,1-DB optimizes molecular configuration and interactions, enhancing electron delocalization and stabilizing triplet excitons, which improves intersystem crossing (ISC) and spin-orbit coupling (SOC) while reducing nonradiative decay, thus enabling RTP. Additionally, based on phosphorescence resonance energy transfer, multicolor afterglows were achieved by doping fluorescein into 1,1-DB. This work not only provides a new class of RTP materials but also offers valuable insights for the discovery and optimization of rational designs in RTP materials, potentially triggering the exploration of new functions and properties within boron-nitrogen molecular systems.
实现纯有机室温磷光(RTP)材料因其在光电子学中的应用而备受关注。然而,由于纯有机材料中三重态激子的弛豫过程复杂,通过控制三重态激子来提高其RTP性能具有挑战性。因此,探索有效的策略来调控三重态激子至关重要。在此,我们提出一种N─B─N异构化策略来增强RTP性能。合成了两种含有HN─B─NH单元(B{1,2-(NH)CH})的异构体,即1,1-DB和1,2-DB,以探究它们的RTP性质。有趣的是,1,1-DB表现出优异的RTP,而1,2-DB的磷光可忽略不计。1,1-DB中的N─B─N单元优化了分子构型和相互作用,增强了电子离域并稳定了三重态激子,这改善了系间窜越(ISC)和自旋轨道耦合(SOC),同时减少了非辐射衰变,从而实现了RTP。此外,基于磷光共振能量转移,通过将荧光素掺杂到1,1-DB中实现了多色余辉。这项工作不仅提供了一类新型的RTP材料,还为RTP材料的合理设计的发现和优化提供了有价值的见解,可能引发对硼氮分子系统内新功能和性质的探索。