Kaplan David, Lazarus Hillard M, Valent Jason, Anwer Faiz, Mazzoni Sandra, Samaras Christy, Williams Louis, Nakashima Meghan, Hanna Mazen, Raza Shahzad, Christian Eric, Khouri Jack
CellPrint Biotechnology LLC, Shaker Heights, Ohio, USA.
Department of Medicine, Case Western Reserve University, Shaker Heights, Ohio, USA.
J Cell Mol Med. 2025 Jun;29(12):e70550. doi: 10.1111/jcmm.70550.
Signalling networks have been assessed in blood cells by assessing individual phosphoantigens. We considered the possibility that bivariate correlations involving a series of signalling molecules could be used to delineate functional signalling networks in cells from clinical samples. Here, we describe a novel approach to signalling network analysis using enhanced flow cytometry to provide increased resolving power and restricted-dimensional cytometry which simplifies the analysis so that the precision of the analysis is optimised. This approach has been validated in short-term cultures by recapitulating known tenets of two distinct pathways. Additionally, new findings from our unique approach provide both expanded and nuanced views of signalling circuits. Applying our technology platform to blood mononuclear cells from patients with plasma cell disorders, we identified cell-type specific features of signalling pathways by distinct patterns of bivariate correlations. The intermolecular relationships between signalling analytes provide a description of the signalling network in blood cells from clinical samples. Consequently, our approach has the potential to assess how the blood mononuclear cell-type specific signalling network affects pathophysiology and pathogenesis.
通过评估单个磷酸化抗原,已对血细胞中的信号网络进行了评估。我们考虑了这样一种可能性,即涉及一系列信号分子的双变量相关性可用于描绘临床样本细胞中的功能信号网络。在此,我们描述了一种用于信号网络分析的新方法,该方法使用增强型流式细胞术来提高分辨能力,并采用受限维度流式细胞术简化分析,从而优化分析的精度。这种方法已在短期培养中通过重现两条不同途径的已知原则得到验证。此外,我们独特方法的新发现为信号通路提供了更广泛和细致入微的观点。将我们的技术平台应用于浆细胞疾病患者的血液单核细胞,我们通过双变量相关性的不同模式确定了信号通路的细胞类型特异性特征。信号分析物之间的分子间关系描述了临床样本血细胞中的信号网络。因此,我们的方法有潜力评估血液单核细胞类型特异性信号网络如何影响病理生理学和发病机制。