Ciche Todd, Moar William, Ahmad Aqeel, Bowen David, Chay Catherine, Howe Arlene, Kesanapalli Uma, Lutke Jennifer, Bean Gregory, Milligan Jason, Pleau Michael, Yin Yong, Akbar Waseem, Heppler Marty, Griffith Cara, Morrell Kimberly, Dunkmann Katherine, Anderson Heather, Ahrens Jeffrey, Sommers Pacifica, Burgie E Sethe, Zinnel Fred, Zheng Meiying, Fitzpatrick James, Rau Michael, Rydel Timothy, White Tommi, Kerns David, Roberts James
Bayer Crop Science, Chesterfield, Missouri, USA.
Washington University Center for Cellular Imaging, St. Louis, Missouri, USA.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0025325. doi: 10.1128/aem.00253-25. Epub 2025 Jun 20.
New proteins are needed to control insects not controlled with (Bt) crops, and those evolving resistance to Bt crops. These proteins are increasingly being reported from non-Bt organisms to control Bt-resistant insects. However, these proteins mostly control the corn rootworm, spp. (Coleoptera), whereas most Bt-resistant insects are lepidopteran. We hypothesized that diversifying our search for proteins into non-Bt organisms, such as those related to used to control Japanese beetle , could yield proteins with new insecticidal activities against Lepidoptera. Here, we identified Vip3Cb1 and Vip3Cc1 with broad lepidopteran activity, the first Vip3 proteins discovered from strains in the containing clade. Vip3Cb1 protected plants against cotton bollworm, and tobacco budworm and fall armyworm, , and Southwestern corn borer, , in cotton and maize, respectively, like commercial Vip3Aa. Distinct from Vip3Aa, Vip3Cb1 also protected maize against European corn borer, , the primary maize pest in the United States, with recent reports of resistance to Bt proteins. Consistent with previous reports, insects resistant to Vip3Aa were cross-resistant to Vip3Cb1. Cryo-electron microscopy demonstrated that Vip3Cb1 formed a pore-shaped tetramer upon proteolytic activation, in agreement with the pore-forming mechanism of action of Vip3Aa. Thus, diversifying the search beyond Bt has led to the discovery of the first Vip3 proteins from spp. with different activity spectra from Vip3Aa, providing additional tools to control pests, including those currently resistant to Bt Cry proteins.IMPORTANCENew insecticidal proteins are needed for controlling insect pests that can devastate crop yield if left uncontrolled. Diversifying our search for new insecticidal proteins in spp. resulted in the discovery of Vip3Cb1 and Vip3Cc1 insecticidal proteins active against lepidopteran crop pests. Structure and cross-resistance studies indicate overlap in the mechanism of action between Vip3Cb1 and commercial Vip3Aa. However, new activities, such as controlling European corn borer, make these proteins important new tools in the insect control toolbox.
需要新的蛋白质来防治无法被苏云金芽孢杆菌(Bt)作物控制的昆虫,以及那些对Bt作物产生抗性的昆虫。越来越多的报道称,非Bt生物中存在能防治Bt抗性昆虫的蛋白质。然而,这些蛋白质大多用于防治玉米根萤叶甲属(Diabrotica spp.,鞘翅目)昆虫,而大多数对Bt产生抗性的昆虫是鳞翅目昆虫。我们推测,将寻找蛋白质的范围扩大到非Bt生物,比如与用于防治日本丽金龟(Popillia japonica)的绿僵菌(Metarhizium)相关的生物,可能会产生对鳞翅目昆虫具有新杀虫活性的蛋白质。在此,我们鉴定出了具有广泛鳞翅目活性的Vip3Cb1和Vip3Cc1,这是从包含绿僵菌的进化枝菌株中发现的首批Vip3蛋白。Vip3Cb1能像市售的Vip3Aa一样,分别在棉花和玉米中保护植株免受棉铃虫(Helicoverpa armigera)、烟芽夜蛾(Heliothis virescens)、草地贪夜蛾(Spodoptera frugiperda)和西南玉米螟(Ostrinia furnacalis)的侵害。与VipAa不同的是,Vip3Cb1还能保护玉米免受欧洲玉米螟(Ostrinia nubilalis)的侵害,欧洲玉米螟是美国主要的玉米害虫,近期有对Bt蛋白产生抗性的报道。与之前的报道一致,对Vip3Aa产生抗性的昆虫对Vip3Cb1也具有交叉抗性。冷冻电子显微镜显示,Vip3Cb1在蛋白水解激活后形成孔状四聚体,这与Vip3Aa的成孔作用机制一致。因此,将搜索范围扩大到Bt之外,已导致从绿僵菌中发现了首批Vip3蛋白,其活性谱与Vip3Aa不同(原文此处有误,根据前文推测应该是与Vip3Aa不同),为防治害虫提供了更多工具,包括那些目前对Bt Cry蛋白具有抗性的害虫。
需要新的杀虫蛋白来防治那些如果不加以控制就会严重破坏作物产量的害虫。在绿僵菌中扩大对新杀虫蛋白的搜索范围,导致发现了对鳞翅目作物害虫具有活性的Vip3Cb1和Vip3Cc1杀虫蛋白。结构和交叉抗性研究表明,Vip3Cb1和市售的Vip3Aa在作用机制上存在重叠。然而,其新的活性,如防治欧洲玉米螟,使这些蛋白质成为昆虫防治工具箱中的重要新工具。