Suppr超能文献

一种用于从两张非同步血管造影图像同时进行校准和三维冠状动脉中心线重建的综合方法。

An Integrated Approach for Simultaneous Calibration and 3D Coronary Artery Centerline Reconstruction from Two Non-Simultaneous Angiographic Images.

作者信息

Lin Heqiang, Li Hongyang, Xie Songyun, Zhang Xin, Lian Kun, Li Chengxiang, Gao Haokao, Wang Yuanyuan, Guo Yi, Xie Xinzhou

出版信息

IEEE Trans Med Imaging. 2025 Jun 20;PP. doi: 10.1109/TMI.2025.3582168.

Abstract

The three-dimensional (3D) reconstruction of the coronary artery from angiographic images is crucial for diagnosing and treating coronary artery disease. However, accurate reconstruction is challenging due to the non-simultaneous acquisition of angiographic images and the complex motion patterns of coronary arteries. State-of-the-art methods typically involve a two-stage process: manual selection of corresponding point pairs for spatial geometric calibration, followed by centerline reconstruction. However, overlap and foreshortening in 2D images complicate point selection, often requiring repeated adjustments, and the lack of sufficient point pairs can lead to reconstruction failure. In this paper, we propose a one-stage automatic approach that integrates calibration and 3D centerline reconstruction, eliminating the need for manual calibration. For each angiographic image, we constructed a 3D deformable curve corresponding to the 2D vessel centerline, strictly constrained by the projection lines. Unlike traditional methods that minimize 2D reprojection errors, our approach minimizes the 3D spatial distance between two 3D curves, simultaneously optimizing the spatial transformation and the two deformable 3D curves. The transformation is optimized through iterative curves registration, while the curves are evolved based on a cosine representation method. Both processes occur simultaneously and mutually reinforce each other, resulting in high-precision 3D reconstruction without manual calibration. The proposed approach was validated on 45 phantom and 107 clinical data. The mean space error was 0.085 ± 0.085 mm for phantom data; and the mean reprojection error was 0.060 ± 0.027 mm for clinical data. Results demonstrated that our approach achieves state-of-the-art accuracy while eliminating the need for manual intervention.

摘要

从血管造影图像进行冠状动脉的三维(3D)重建对于冠状动脉疾病的诊断和治疗至关重要。然而,由于血管造影图像的非同步采集以及冠状动脉复杂的运动模式,准确重建具有挑战性。现有技术方法通常涉及一个两阶段过程:手动选择对应点对进行空间几何校准,然后进行中心线重建。然而,二维图像中的重叠和缩短使点的选择变得复杂,常常需要反复调整,并且缺乏足够的点对可能导致重建失败。在本文中,我们提出了一种单阶段自动方法,该方法集成了校准和3D中心线重建,无需手动校准。对于每个血管造影图像,我们构建了一条与二维血管中心线相对应的3D可变形曲线,该曲线受到投影线的严格约束。与最小化二维重投影误差的传统方法不同,我们的方法最小化两条3D曲线之间的3D空间距离,同时优化空间变换和两条可变形3D曲线。通过迭代曲线配准优化变换,同时基于余弦表示方法演化曲线。这两个过程同时发生且相互加强,从而实现无需手动校准的高精度3D重建。所提出的方法在45个模型数据和107个临床数据上得到了验证。模型数据的平均空间误差为0.085±0.085毫米;临床数据的平均重投影误差为0.060±0.027毫米。结果表明,我们的方法在消除手动干预需求的同时达到了现有技术的精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验