Suppr超能文献

氧化铝多孔膜上的冷凝效应与传输

Condensation Effect and Transport on Alumina Porous Membranes.

作者信息

Leivas Fernanda R, Zhao Menghua, Allemand Aymeric, Cottin-Bizonne Cécile, Ramos Stella M M, Barbosa Marcia C, Biance Anne-Laure

机构信息

Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.

Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil.

出版信息

Langmuir. 2025 Jul 1;41(25):15778-15787. doi: 10.1021/acs.langmuir.4c04606. Epub 2025 Jun 20.

Abstract

Understanding the adsorption of water and characterizing the water film formed within nanostructures are essential for advancements in fields such as nanofluidics, water purification, and biosensing devices. In our research, we focused on studying the condensation and transport of water through an alumina membrane with nanopores of varying wettabilities. We introduce a method to alter the membrane's wettability and enhance dissociative adsorption by varying the duration of exposure during plasma cleaning. To create different experimental environments, we modify humidity levels by controlling the vapor pressure. To investigate water transport within the membrane, we apply a voltage and analyze the resulting current response. Our analysis indicates that transport properties improve with thicker water films. We used the Polanyi theory of adsorption to capture the physics of the problem. Analyzing the conductance inside the nanopores, we find that the first monolayers may stagnate due to interactions with the pore walls. This research significantly enhances our understanding of vapor condensation within nanomaterials, particularly considering the influence of different wettabilities. These findings have broad implications for applications such as water vapor capture and related technologies.

摘要

了解水的吸附情况并表征纳米结构内形成的水膜,对于纳米流体学、水净化和生物传感设备等领域的进展至关重要。在我们的研究中,我们专注于研究水通过具有不同润湿性纳米孔的氧化铝膜的冷凝和传输。我们介绍了一种通过改变等离子体清洗过程中的暴露持续时间来改变膜的润湿性并增强解离吸附的方法。为了创建不同的实验环境,我们通过控制蒸气压来改变湿度水平。为了研究膜内的水传输,我们施加电压并分析由此产生的电流响应。我们的分析表明,传输特性会随着水膜变厚而改善。我们使用吸附的玻尔兹曼理论来捕捉问题的物理原理。分析纳米孔内的电导率,我们发现由于与孔壁的相互作用,前几个单分子层可能会停滞。这项研究显著增强了我们对纳米材料内蒸汽冷凝的理解,特别是考虑到不同润湿性的影响。这些发现对水蒸气捕获及相关技术等应用具有广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e05/12224303/e149fd337d37/la4c04606_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验