Suppr超能文献

α-氧化铝表面的超亲水性源于界面水与特定的醇铝紧密结合。

Superhydrophilicity of α-alumina surfaces results from tight binding of interfacial waters to specific aluminols.

机构信息

Department of Chemistry, Temple University, Philadelphia, PA 19122, United States; Center for Complex Materials from First Principles (CCM), Temple University, 1925 North 12th Street, Philadelphia, PA 19122, United States.

Department of Chemistry, Temple University, Philadelphia, PA 19122, United States.

出版信息

J Colloid Interface Sci. 2022 Dec 15;628(Pt A):943-954. doi: 10.1016/j.jcis.2022.07.164. Epub 2022 Jul 30.

Abstract

HYPOTHESIS

Understanding the microscopic driving force of water wetting is challenging and important for design of materials. The relations between structure, dynamics and hydrogen bonds of interfacial water can be investigated using molecular dynamics simulations.

EXPERIMENTS AND SIMULATIONS

Contact angles at the alumina (0001) and (112‾0) surfaces are studied using both classical molecular dynamics simulations and experiments. To test the superhydrophilicity, the free energy cost of removing waters near the interfaces are calculated using the density fluctuations method. The strength of hydrogen bonds is determined by their lifetime and geometry.

FINDINGS

Both surfaces are superhydrophilic and the (0001) surface is more hydrophilic. Interactions between surfaces and interfacial waters promote a templating effect whereby the latter are aligned in a pattern that follows the underlying lattice of the surfaces. Translational and rotational dynamics of interfacial water molecules are slower than in bulk water. Hydrogen bonds between water and both surfaces are asymmetric, water-to-aluminol ones are stronger than aluminol-to-water ones. Molecular dynamics simulations eliminate the impacts of surface contamination when measuring contact angles and the results reveal the microscopic origin of the macroscopic superhydrophilicity of alumina surfaces: strong water-to-aluminol hydrogen bonds.

摘要

假设

理解水润湿的微观驱动力具有挑战性,且对材料设计很重要。可以使用分子动力学模拟研究界面水的结构、动力学和氢键之间的关系。

实验和模拟

使用经典分子动力学模拟和实验研究了氧化铝 (0001) 和 (112‾0) 表面的接触角。为了测试超亲水性,使用密度涨落法计算了去除界面附近水的自由能成本。氢键的强度由其寿命和几何形状决定。

结果

两个表面都是超亲水的,(0001) 表面更亲水。表面与界面水之间的相互作用促进了模板效应,后者在遵循表面下晶格的模式中排列。界面水分子的平移和旋转动力学比体相水中慢。水分子与两个表面之间的氢键是不对称的,水与醇铝之间的氢键比醇铝与水之间的氢键强。分子动力学模拟在测量接触角时消除了表面污染的影响,结果揭示了氧化铝表面宏观超亲水性的微观起源:强的水与醇铝氢键。

相似文献

9
10
Liquid ethanol simulated on crystalline alpha alumina.在结晶α-氧化铝上模拟液态乙醇。
J Phys Chem B. 2013 Apr 11;117(14):3829-40. doi: 10.1021/jp312238d. Epub 2013 Apr 1.

本文引用的文献

1
Crystal face dependent intrinsic wettability of metal oxide surfaces.金属氧化物表面的晶面依赖性本征润湿性。
Natl Sci Rev. 2020 Jul 18;8(1):nwaa166. doi: 10.1093/nsr/nwaa166. eCollection 2021 Jan.
3
Recent Progress toward Ab Initio Modeling of Electrocatalysis.电催化从头算建模的最新进展。
J Phys Chem Lett. 2021 Sep 23;12(37):8924-8931. doi: 10.1021/acs.jpclett.1c02086. Epub 2021 Sep 9.
8
Probing Heterogeneous Charge Distributions at the α-AlO(0001)/HO Interface.探测α-AlO(0001)/HO界面处的非均匀电荷分布。
J Am Chem Soc. 2020 Jul 15;142(28):12096-12105. doi: 10.1021/jacs.0c01366. Epub 2020 Jul 6.
9
Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces.水在亲水和疏水表面的结构和性质。
Annu Rev Chem Biomol Eng. 2020 Jun 7;11:523-557. doi: 10.1146/annurev-chembioeng-120919-114657. Epub 2020 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验