Sobianowska-Turek Agnieszka, Fornalczyk Agnieszka, Zygmunt Michał, Janosz Michał
Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; Elemental Strategic Metals Sp. z o.o, Traugutta 42A, 05-825 Grodzisk Mazowiecki, Poland.
Elemental Strategic Metals Sp. z o.o, Traugutta 42A, 05-825 Grodzisk Mazowiecki, Poland; Faculty of Materials Engineering, Department of Production Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland.
Waste Manag. 2025 Aug 1;204:114943. doi: 10.1016/j.wasman.2025.114943. Epub 2025 Jun 19.
The increasing use of lithium-ion batteries (LIBs) necessitates the development of efficient recycling methods to manage the resulting waste stream, which includes various components such as electrode materials, electrolytes, plastics and steel. This paper examines innovative recycling processes, with a focus on hydrometallurgical techniques initiated by high-temperature reductive combustion of Li-ion masses. This thermal pretreatment transforms key chemical compounds contained in the battery mass into three products: alloy, slag and dust. The paper presents experimental results indicating that dust collected in bag filters during pyrometallurgical processing of LIBs contains significant lithium and fluorine content. By optimizing acid leaching parameters, selective lithium recovery is possible in the form of technical grade LiCO with a purity of 99%. These studies indicate a promising path to increase lithium recovery efficiency while maintaining the cost-effectiveness of individual recycling operations. Overall, the research highlights the critical role of adaptive recycling strategies in addressing the challenges posed by evolving battery technologies and waste management. Interestingly, the research also addresses the potential transition to non-lithium battery technologies, such as sodium-ion and zinc-ion cells, which could significantly change the recycling landscape and reduce the need for lithium recovery from lithium-ion batteries waste.
锂离子电池(LIBs)的使用日益增加,这就需要开发高效的回收方法来处理由此产生的废物流,该废物流包括电极材料、电解质、塑料和钢铁等各种成分。本文研究了创新的回收工艺,重点关注通过锂离子物料的高温还原燃烧引发的湿法冶金技术。这种热预处理将电池物料中含有的关键化合物转化为三种产物:合金、炉渣和粉尘。本文给出的实验结果表明,在LIBs火法冶金过程中袋式过滤器收集的粉尘含有大量的锂和氟。通过优化酸浸参数,可以以纯度为99%的工业级碳酸锂的形式实现选择性锂回收。这些研究表明了一条在保持单个回收操作成本效益的同时提高锂回收效率的有前景的途径。总体而言,该研究突出了适应性回收策略在应对不断发展的电池技术和废物管理所带来的挑战方面的关键作用。有趣的是,该研究还探讨了向非锂电池技术(如钠离子和锌离子电池)的潜在转变,这可能会显著改变回收格局,并减少从锂离子电池废料中回收锂的需求。