Huang Fanrun, Zhou Ying, Yang Jin, Zeng Hui, Tao Shiqiang, Chu Hongqiang, Song Zijian, Huang Huajie, Gao Shuaixiao, Zhang Xin, Xiong Xinyan, Zhang Chi
College of Materials Science and Engineering, Hohai University, Changzhou, 213200, PR China.
College of Materials Science and Engineering, Hohai University, Changzhou, 213200, PR China.
Environ Res. 2025 Oct 15;283:122194. doi: 10.1016/j.envres.2025.122194. Epub 2025 Jun 18.
Conventional dense concrete for slope protection enhances physical stability but impedes water-soil exchange and degrades ecological functions. Planting concrete offers a sustainable alternative, yet challenges remain in nutrient regulation and long-term plant support. Although nutrient-rich solid waste minerals hold great potential, their multifunctional roles in planting concrete have been rarely explored. Herein, a novel struvite-modified planting concrete (SPC) with balanced mechanical and vegetation performance was developed for sustainable slope protection and environmental restoration. Among the samples, SPC-6 exhibited optimal physical properties with a compressive strength of 13.1 MPa, splitting tensile strength of 2.1 MPa and porosity of 31.4 %, ensuring both structural strength and permeability (lowest coefficient: 4.5 mm/s). Struvite incorporation improved water absorption, alkalinity regulation and freeze-thaw resistance, with SPC-6 showing the lowest mass and strength loss after 50 cycles. Hydration heat and thermogravimetric analysis indicated enhanced hydration activity, with SPC-6 exhibiting the highest cumulative heat (97.3 J/g after 77 h) and the lowest residual mass (72.3 %). Correspondingly, SPC-6 was superior in vegetation performance with the highest recorded dry weight (0.087 g), protein content (5.3 mg/g), and chlorophyll content (2.3 mg/g), along with the highest 30-d nutrient accumulation (6.0 % total nitrogen and 9.4 mg/g total phosphorus) in the ryegrass plant. Nutrient leaching tests showed sustained N and P release, with SPC-6 reaching 22.2 mg NO-N and 1.1 mg PO-P at 28 days, supporting improved plant growth. This study offers insights into multifunctional eco-concrete design, promoting physical stabilization and ecological restoration in environmental applications.
用于边坡防护的传统密实混凝土可增强物理稳定性,但会阻碍水土交换并降低生态功能。植被混凝土提供了一种可持续的替代方案,但在养分调节和长期植物支撑方面仍存在挑战。尽管富含养分的固体废弃物矿物具有巨大潜力,但其在植被混凝土中的多功能作用鲜有研究。在此,开发了一种具有平衡力学性能和植被性能的新型鸟粪石改性植被混凝土(SPC),用于可持续边坡防护和环境修复。在这些样品中,SPC-6表现出最佳物理性能,抗压强度为13.1MPa,劈裂抗拉强度为2.1MPa,孔隙率为31.4%,确保了结构强度和渗透性(最低系数:4.5mm/s)。掺入鸟粪石改善了吸水性、碱度调节和抗冻融性,SPC-6在50次循环后质量和强度损失最低。水化热和热重分析表明水化活性增强,SPC-6表现出最高的累积热量(77小时后为97.3J/g)和最低的残余质量(72.3%)。相应地,SPC-6在植被性能方面表现优异,记录的干重最高(0.087g)、蛋白质含量最高(5.3mg/g)和叶绿素含量最高(2.3mg/g),以及黑麦草植物中最高的30天养分积累(总氮6.0%和总磷9.4mg/g)。养分淋溶试验表明氮和磷持续释放,SPC-6在28天时达到22.2mg NO-N和1.1mg PO-P,有助于改善植物生长。本研究为多功能生态混凝土设计提供了见解,促进了环境应用中的物理稳定和生态修复。