Metwally Heba M, El-Banna Omar M, Abdel-Latif Ehab, Gabal Raghda Abo
Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, El Dakhlia, Egypt.
Sci Rep. 2025 Jun 20;15(1):20170. doi: 10.1038/s41598-025-05691-w.
This study explores the potential of six novel thiophene derivative thin films (THIOs) for reducing cancer cell adhesion and enhancing controlled drug release on inert glass substrates. Thiophene derivatives 3a-c and 5a-c were synthesized and characterized using IR, H NMR, C NMR, and elemental analysis before being spin-coated onto glass to form thin films. SEM analysis and roughness measurements were used to assess their structural and functional properties. Biological evaluations demonstrated that the films significantly reduced HepG2 liver cancer cell adhesion (~ 78% decrease vs. control) and enabled controlled drug release, validated through the Korsmeyer-Peppas model (R > 0.99). Theoretical studies, including in-silico target prediction, molecular docking with JAK1 (PDB: 4E4L), and DFT calculations, provided insights into the electronic properties and chemical reactivity of these compounds. Notably, compound 5b exhibited the best binding energy (-7.59 kcal/mol) within the JAK1 pocket, aligning with its observed apoptotic behavior in cell culture. DFT calculations further revealed that 5b had the lowest calculated energy values; -4.89 eV (HOMO) and - 3.22 eV (LUMO), and the energy gap was found to be 1.66 eV, supporting its role in JAK1 inhibition and cancer cell adhesion reduction. These findings underscore the promise of thiophene derivatives in biomedical applications, potentially leading to safer surgical procedures and more effective localized drug delivery systems.
本研究探索了六种新型噻吩衍生物薄膜(THIOs)在惰性玻璃基板上降低癌细胞粘附和增强可控药物释放的潜力。在旋涂到玻璃上形成薄膜之前,合成了噻吩衍生物3a - c和5a - c,并使用红外光谱(IR)、氢核磁共振(H NMR)、碳核磁共振(C NMR)和元素分析对其进行了表征。通过扫描电子显微镜(SEM)分析和粗糙度测量来评估它们的结构和功能特性。生物学评估表明,这些薄膜显著降低了HepG2肝癌细胞的粘附(与对照组相比减少了约78%),并实现了可控药物释放,这通过Korsmeyer - Peppas模型得到了验证(R > 0.99)。理论研究,包括计算机模拟靶点预测、与JAK1(蛋白质数据银行:4E4L)的分子对接以及密度泛函理论(DFT)计算,为这些化合物的电子性质和化学反应性提供了见解。值得注意的是,化合物5b在JAK1口袋内表现出最佳结合能(-7.59千卡/摩尔),与其在细胞培养中观察到的凋亡行为一致。DFT计算进一步表明,5b具有最低的计算能量值;-4.89电子伏特(最高占据分子轨道)和-3.22电子伏特(最低未占据分子轨道),并且发现能隙为1.66电子伏特,这支持了其在抑制JAK1和减少癌细胞粘附中的作用。这些发现强调了噻吩衍生物在生物医学应用中的前景,可能会带来更安全的手术程序和更有效的局部药物递送系统。
Health Technol Assess. 2001
Comb Chem High Throughput Screen. 2025
ACS Omega. 2025-2-9
Int J Mol Sci. 2024-2-21
Chem Biodivers. 2024-7
Mol Biol Rep. 2024-1-22