Rather Muzamil Ahmad, Bharadwaj Rachayita, Haldar Mrinmoy, Sengar Devendra Singh, Verma Hritick Gyan, Goswami Pradip K, Mandal Manabendra
Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
Institute of Biotechnology & Geotectonic Studies, Jorhat 785008, Assam, India.
Sci Total Environ. 2025 Aug 20;991:179876. doi: 10.1016/j.scitotenv.2025.179876. Epub 2025 Jun 20.
Oil pollution presents a significant global environmental challenge that necessitates sustainable and eco-friendly solutions. One promising approach involves utilizing surfactant-producing microorganisms for the bioremediation of areas contaminated by crude oil. Biosurfactants enhance the microbial biodegradation of crude oil by increasing its bioavailability, thereby making the degradation process more efficient. In this study, oil-degrading and biosurfactant-producing bacteria were isolated from soil and water samples contaminated with crude oil, collected from Assam, India. Among all tested strains Pseudomonas aeruginosa MAR1 demonstrated superior biosurfactant production and crude oil degradation, evidenced by the largest halo zone (14 mm) on CTAB agar, highest oil displacement (42 mm), emulsifying activity (132.0 mL), emulsifying index (E24) of 24.12 %, haemolysis clearance zone (16 mm), foaming activity (76.7 %), optimal growth (OD = 1.99) in crude oil media, and highest degradation efficiency (85.34 %) in gravimetric analysis. The identification of this strain was confirmed through morphological, biochemical, and molecular (16S rRNA) analyses. Media optimization for biosurfactant production was performed using the One-Factor-at-a-Time (OFAT) method, focusing on surface tension reduction and absorbance (bacterial growth). The optimal conditions included glucose (1 %) and yeast extract (1 %) as carbon and nitrogen sources, respectively, with a pH of 7 and incubation at 30-40 °C. Under these conditions, a honey-colored biosurfactant was extracted using the acid precipitation method, yielding 1.8 g/L and demonstrating a critical micelle concentration (CMC) of 76.0 mg/L. The biosurfactant reduced the surface tension of water from 70.1 to 30.9 dynes/cm. Further analysis, including FTIR and HPLC, revealed the presence of rhamnolipids, specifically mono- and di-rhamnolipids. This study highlights the bioremediation potential of P. aeruginosa MAR1 and its biosurfactant, signifying their applicability in environmental remediation.
石油污染是一项重大的全球环境挑战,需要可持续且环保的解决方案。一种有前景的方法是利用产表面活性剂微生物对受原油污染的区域进行生物修复。生物表面活性剂通过提高原油的生物可利用性来增强其微生物降解,从而使降解过程更高效。在本研究中,从印度阿萨姆邦采集的受原油污染的土壤和水样中分离出了降解石油和产生物表面活性剂的细菌。在所有测试菌株中,铜绿假单胞菌MAR1表现出卓越的生物表面活性剂产生能力和原油降解能力,这通过在CTAB琼脂上最大的晕圈(14毫米)、最高的油置换(42毫米)、乳化活性(132.0毫升)、24.12%的乳化指数(E24)、溶血清除区(16毫米)、发泡活性(76.7%)、在原油培养基中的最佳生长(OD = 1.99)以及重量分析中的最高降解效率(85.34%)得以证明。通过形态学、生化和分子(16S rRNA)分析确认了该菌株的鉴定。使用一次一因子(OFAT)方法对生物表面活性剂生产进行培养基优化,重点关注表面张力降低和吸光度(细菌生长)。最佳条件包括分别以葡萄糖(1%)和酵母提取物(1%)作为碳源和氮源,pH值为7,并在30 - 40°C下培养。在这些条件下,使用酸沉淀法提取出一种蜂蜜色的生物表面活性剂,产量为1.8克/升,临界胶束浓度(CMC)为76.0毫克/升。该生物表面活性剂将水的表面张力从70.1达因/厘米降低至30.9达因/厘米。进一步的分析,包括傅里叶变换红外光谱(FTIR)和高效液相色谱(HPLC),揭示了鼠李糖脂的存在,特别是单鼠李糖脂和二鼠李糖脂。本研究突出了铜绿假单胞菌MAR1及其生物表面活性剂的生物修复潜力,表明它们在环境修复中的适用性。