Gürbüz Berfin, Ciftci Fatih, Özarslan Ali Can, Akyuz Yilmaz Bahar
Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey; Biomedical Electronic Design Application and Research Centre (BETAM), Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey; BioriginAI Research Group, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey; Department of Technology Transfer Office (TTO), Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
Int J Biol Macromol. 2025 Jun 19;319(Pt 1):145388. doi: 10.1016/j.ijbiomac.2025.145388.
In tissue engineering, e-skin patches serve as wearable wound dressings for healing. In this study, electrospun nanofiber composites were developed by integrating PMMA, MXene, and chitosan (CS) to fabricate multifunctional e-skin scaffolds. The resulting PMMA-MXene-CS composite e-skin scaffolds exhibited a uniform fibrous morphology with average diameters of 600 ± 50 nm and high porosity (>85 %), providing an optimal microenvironment for tissue interfacing. Mechanical testing revealed that the PMMX:CS composite e-skin scaffold achieved a tensile strength of 13 MPa, a Young's modulus of 0.38 GPa, and elongation at break of 200 %, representing increases of 225 %, 36 %, and 43 %, respectively, over pure PMMA. Dielectric spectroscopy demonstrated a minimal loss tangent (<0.05) across 10-100 kHz and a built-in potential of 1.19 V, while electrochemical impedance measurements showed a charge-transfer resistance of 1.38 kΩ and a low leakage current, indicating excellent signal fidelity for sensing applications. Thermal conductivity tests under 10 GPa pressure yielded 28 W/m·K, ensuring rapid heat dissipation. Antimicrobial assays against Escherichia coli, Staphylococcus aureus, and Candida albicans confirmed inhibition rates of 95 %, 92 %, and 99 %, respectively, significantly outperforming control samples. Furthermore, antibacterial assays also demonstrated broad-spectrum efficacy, with inhibition zones up to 27.8 mm against Streptococcus pneumoniae and 26.4 mm against Listeria monocytogenes, and zones exceeding 25 mm for both Gram-negative and Gram-positive pathogens. Thus, obtained results revealed that the combination of PMMA, MXene and CS significantly enhanced inhibition against gram-negative bacteria compared to the control groups. Overall, PMMA-MXene-CS composite e-skin scaffold demonstrated promising mechanical, electrical, and antimicrobial properties, positioning them as strong candidates for next-generation flexible, durable, and multifunctional e-skin applications.
在组织工程中,电子皮肤贴片可作为用于伤口愈合的可穿戴敷料。在本研究中,通过整合聚甲基丙烯酸甲酯(PMMA)、碳化钛铝(MXene)和壳聚糖(CS)开发了静电纺丝纳米纤维复合材料,以制备多功能电子皮肤支架。所得的PMMA-MXene-CS复合电子皮肤支架呈现出均匀的纤维形态,平均直径为600±50纳米,孔隙率高(>85%),为组织界面提供了最佳的微环境。力学测试表明,PMMX:CS复合电子皮肤支架的拉伸强度为13兆帕,杨氏模量为0.38吉帕,断裂伸长率为200%,与纯PMMA相比,分别提高了225%、36%和43%。介电谱显示在10-100千赫兹范围内损耗角正切极小(<0.05),内置电位为1.19伏,而电化学阻抗测量显示电荷转移电阻为1.38千欧,漏电流低,表明其在传感应用中具有出色的信号保真度。在10吉帕压力下的热导率测试结果为28瓦/米·开尔文,确保了快速散热。针对大肠杆菌、金黄色葡萄球菌和白色念珠菌的抗菌试验证实抑制率分别为95%、92%和99%,显著优于对照样品。此外,抗菌试验还显示出广谱功效,对肺炎链球菌的抑菌圈可达27.8毫米,对单核细胞增生李斯特菌的抑菌圈为26.4毫米,对革兰氏阴性和革兰氏阳性病原体的抑菌圈均超过25毫米。因此,所得结果表明,与对照组相比,PMMA、MXene和CS的组合显著增强了对革兰氏阴性菌的抑制作用。总体而言,PMMA-MXene-CS复合电子皮肤支架展现出了良好的机械、电学和抗菌性能,使其成为下一代柔性、耐用和多功能电子皮肤应用的有力候选材料。