Suppr超能文献

肝移植期间输血后生物进化的预测:机器学习对决策的贡献。

Prediction of biological evolution following blood product transfusion during liver transplantation: the contribution of machine learning to decision-making.

作者信息

Duranteau Olivier, Popoff Benjamin, Abels Axel, Lucidi Valerio, Savier Eric, Blanchard Florian, Martinez Thibault, Loi Patrizia, Germanova Desislava, Demulder Anne, Creteur Jacques, Tuna Turgay

机构信息

Intensive Care, HIA Percy, Clamart, France

Anesthesiology, Hopital Erasme, Bruxelles, Belgium.

出版信息

BMJ Health Care Inform. 2025 Jun 22;32(1):e101466. doi: 10.1136/bmjhci-2025-101466.

Abstract

OBJECTIVES

Liver transplantation is a complex procedure frequently requiring transfusion of blood products to manage coagulopathy and haemorrhage. This study aimed to develop machine learning models to predict the biological effects of blood product transfusions, assisting clinicians in selecting optimal therapeutic combinations.

METHODS

Using data from two cohorts over 20 years from two academic hospitals, 10 supervised machine learning models were trained and validated on four biomarkers: fibrinogen, haemoglobin, prothrombin time and activated partial thromboplastin time ratio. Models were evaluated using R², root mean squared error and SD metrics, with external validation performed on the second cohort.

RESULTS

The results indicated that while certain models, such as the stack model for late fibrinogen (R²=0.63) or the extra trees model for late prothrombin time (R²=0.66), demonstrated promising predictive capacity, the overall external validation performance was suboptimal. Despite the use of a large healthcare database, a rigorous statistical methodology and an academic machine learning methodology, most models showed limited generalisability (R² < 0.5).

DISCUSSION

Key limitations included the small dataset size relative to machine learning requirements, lack of advanced haemostatic parameters (eg, ROtational ThromboElastoMetry (ROTEM) or Thromboelastography (TEG)) and the variability introduced by evolving surgical practices over the 20-year study period. Despite these limitations, this study provides a reproducible framework for evaluating transfusion efficacy, supported by openly shared Python code and the application of Taylor diagrams for model evaluation.

CONCLUSION

While our models are unsuitable for routine clinical use, they highlight the potential of machine learning in transfusion medicine. Future work should focus on integrating larger datasets, advanced biomarkers and real-time data.

摘要

目的

肝移植是一个复杂的过程,经常需要输注血液制品来处理凝血功能障碍和出血问题。本研究旨在开发机器学习模型,以预测血液制品输注的生物学效应,协助临床医生选择最佳治疗组合。

方法

利用来自两家学术医院20多年来两个队列的数据,在纤维蛋白原、血红蛋白、凝血酶原时间和活化部分凝血活酶时间比值这四个生物标志物上训练并验证了10种监督式机器学习模型。使用R²、均方根误差和标准差指标对模型进行评估,并在第二个队列上进行外部验证。

结果

结果表明,虽然某些模型,如晚期纤维蛋白原的堆叠模型(R² = 0.63)或晚期凝血酶原时间的极端随机树模型(R² = 0.66)显示出有前景的预测能力,但总体外部验证性能并不理想。尽管使用了大型医疗数据库、严格的统计方法和学术性机器学习方法,但大多数模型的泛化能力有限(R² < 0.5)。

讨论

主要局限性包括相对于机器学习要求而言数据集规模较小、缺乏先进的止血参数(如旋转血栓弹力图(ROTEM)或血栓弹力图(TEG))以及在20年研究期间不断演变的手术操作所引入的变异性。尽管存在这些局限性,但本研究提供了一个可重复的评估输血疗效的框架,有公开共享的Python代码以及应用泰勒图进行模型评估作为支持。

结论

虽然我们的模型不适合常规临床使用,但它们凸显了机器学习在输血医学中的潜力。未来的工作应侧重于整合更大的数据集、先进的生物标志物和实时数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fbc/12184408/89cfe367ac76/bmjhci-32-1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验