Sharma Anuj, Samanta Tapendu, Cybińska Joanna
Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland.
Department of Chemistry, University of Wrocław, Wrocław, Poland.
Macromol Rapid Commun. 2025 Sep;46(18):e00378. doi: 10.1002/marc.202500378. Epub 2025 Jun 22.
Nature relies on precisely defined macromolecules for complex biochemical processes with exceptional specificity and efficiency. To replicate these properties in synthetic systems, chemists have developed sequence-defined macromolecules-polymers with absolute control over monomer sequence and structure, enabling tailored functions. However, their exploration in material science remains limited due to the challenges of synthesis, which is often low-yielding and time-consuming. To address this, we designed and synthesized Fmoc-assisted stereo-controlled sequence-defined oligourethanes (SDOUs) in the solution phase. Our step-economical synthesis employs a two-step, one-pot strategy, eliminating intermediate purification and achieving an average yield of >85% per step. The optimized protocol, using six modified chiral monomers, enables precise stereochemical and sequence control. Thermal analysis revealed that stereochemistry significantly influences thermal transitions, including glass transition, crystallization, and melting behaviors. Tandem mass spectrometry provided in-depth sequencing analysis. We also demonstrated the post-synthetic modification of the SDOUs with dansyl chloride and explored their photophysical properties, such as solvatochromism and aggregation. Circular dichroism analysis highlighted their unique structural and conformational features. This approach establishes scalable, efficient synthetic routes for stereochemically controlled sequence-defined oligourethanes with diverse functional groups.
自然界依靠精确界定的大分子来进行具有卓越特异性和效率的复杂生化过程。为了在合成系统中复制这些特性,化学家们开发了序列定义的大分子——对单体序列和结构具有绝对控制的聚合物,从而实现定制功能。然而,由于合成方面的挑战,它们在材料科学中的探索仍然有限,合成过程往往产率低且耗时。为了解决这个问题,我们在溶液相中设计并合成了芴甲氧羰基(Fmoc)辅助的立体控制序列定义的寡聚脲烷(SDOU)。我们的步骤经济的合成采用两步一锅法策略,无需中间纯化,每步平均产率>85%。使用六种改性手性单体的优化方案能够实现精确的立体化学和序列控制。热分析表明,立体化学显著影响热转变,包括玻璃化转变、结晶和熔化行为。串联质谱提供了深入的测序分析。我们还展示了用丹磺酰氯对SDOU进行合成后修饰,并探索了它们的光物理性质,如溶剂化显色和聚集。圆二色性分析突出了它们独特的结构和构象特征。这种方法为具有不同官能团的立体化学控制的序列定义的寡聚脲烷建立了可扩展、高效的合成路线。