Suppr超能文献

基于纳米多孔阳极氧化铝的气体传感器:进展与展望洞察

Nanoporous anodic alumina-based gas sensors: insights into advances and perspectives.

作者信息

Tran Khoa Nhu, Tran Huong Nguyen Que, Abell Andrew D, Law Cheryl Suwen, Santos Abel

机构信息

School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia.

Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, 5005, Australia.

出版信息

Mikrochim Acta. 2025 Jun 23;192(7):441. doi: 10.1007/s00604-025-07234-6.

Abstract

Achieving high-performance gas sensing requires materials and transduction mechanisms that enhance sensitivity, selectivity, and stability, while addressing challenges such as cross-sensitivity and real-time operation. Conventional sensor platforms often involve trade-offs between response time, detection limits, and environmental robustness. Nanoporous anodic alumina (NAA) fabricated by electrochemical oxidation-anodization-of aluminum provides a tunable platform for engineering gas sensors with tailored structural and physicochemical properties, enabling diverse transduction mechanisms and sensor configurations. This review categorizes NAA-based gas sensors into two major groups: electrochemical and optical sensors. The distinct interplay between the nanoporous architecture of NAA and its dielectric properties enhances charge transport in electrochemical sensors while enabling precise optical confinement and modulation in optical sensing platforms. Ongoing efforts in structural modifications, surface functionalization, and hybrid material integration continue to refine the capabilities of NAA-based gas sensors. Tailored nanostructured coatings, such as functionalized metal oxides, polymer composites, and plasmonic nanostructures, present new pathways for improving sensitivity and selectivity. The integration of data-driven signal processing, including machine learning-assisted analysis, is transforming how sensor responses are interpreted, endowing gas sensors with enhanced discrimination and multiplex sensing capabilities. These advancements, combined with innovations in microfabrication and miniaturized sensor arrays, enable new forms of NAA-based gas sensors. This review provides an up-to-date overview of recent progress and emerging directions in the development of NAA-based gas sensing technologies.

摘要

要实现高性能气体传感,需要具备能够提高灵敏度、选择性和稳定性的材料及转换机制,同时应对交叉敏感性和实时操作等挑战。传统传感器平台往往需要在响应时间、检测限和环境鲁棒性之间进行权衡。通过铝的电化学氧化(阳极氧化)制备的纳米多孔阳极氧化铝(NAA)为设计具有定制结构和物理化学性质的气体传感器提供了一个可调谐平台,从而实现多种转换机制和传感器配置。本综述将基于NAA的气体传感器分为两大类:电化学传感器和光学传感器。NAA的纳米多孔结构与其介电性质之间独特的相互作用增强了电化学传感器中的电荷传输,同时在光学传感平台中实现了精确的光限制和调制。在结构修饰、表面功能化和混合材料集成方面的持续努力不断完善基于NAA的气体传感器的性能。定制的纳米结构涂层,如功能化金属氧化物、聚合物复合材料和等离子体纳米结构,为提高灵敏度和选择性提供了新途径。包括机器学习辅助分析在内的数据驱动信号处理的集成正在改变传感器响应的解读方式,赋予气体传感器更强的辨别能力和多重传感能力。这些进展与微制造和小型化传感器阵列方面的创新相结合,催生了新型基于NAA的气体传感器。本综述提供了基于NAA的气体传感技术发展的最新进展和新兴方向的概述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/946e/12183136/b6865f1eae91/604_2025_7234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验