Li Juncai, Zhang Lizhuan, Yang Cai, Deng Xuqian, Li Yan, Su Minhui, Liu Yuan, Hao Zhanyihao, Chu Likang, Jiang Mengyuan, Yang Yang, Zhang Yuchao, He Lei, Tan Weihong
The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
ACS Nano. 2025 Jul 1;19(25):23056-23066. doi: 10.1021/acsnano.5c03736. Epub 2025 Jun 22.
Precise manipulation of macromolecular condensates is a pivotal tool for dissecting cellular mechanisms and engineering advanced biomaterials. This study presents a DNA molecular engineering approach that enables dynamic and reversible regulation of phase transitions in DNA condensates. The results show a strong association between the degree of phase transition and the functional properties of DNA condensates, driven by significant alterations in their internal physical microenvironment. Factors such as internal viscosity, fluidity, and the ability to incorporate small molecules into biomolecular condensates are shown to play critical roles in these transitions. This work provides a compelling example of dynamic programming of biomolecular condensate phase transitions, while also offering deeper insights into the interplay between their physical microenvironment and biological functions. These findings support to a broader understanding of the principles underlying biomolecular phase transitions in living systems, with implications for cellular processes, disease mechanisms, and biomedical applications.
对大分子凝聚物进行精确操控是剖析细胞机制和构建先进生物材料的关键工具。本研究提出了一种DNA分子工程方法,可实现对DNA凝聚物相变的动态可逆调控。结果表明,相变程度与DNA凝聚物的功能特性之间存在紧密关联,这是由其内部物理微环境的显著变化所驱动的。内部粘度、流动性以及将小分子纳入生物分子凝聚物的能力等因素在这些转变中起着关键作用。这项工作提供了一个令人信服的生物分子凝聚物相变动态编程示例,同时也为深入了解其物理微环境与生物学功能之间的相互作用提供了更多见解。这些发现有助于更广泛地理解生命系统中生物分子相变的基本原理,对细胞过程、疾病机制和生物医学应用具有重要意义。