用于海洋环境监测的工程化海洋生物膜

Engineered Marine Biofilms for Ocean Environment Monitoring.

作者信息

Nevot Guillermo, Pol Cros Maria, Toloza Lorena, Campamà-Sanz Nil, Artigues-Lleixà Maria, Aguilera Laura, Güell Marc

机构信息

Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005, Spain.

Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden.

出版信息

ACS Synth Biol. 2025 Jul 18;14(7):2797-2809. doi: 10.1021/acssynbio.5c00192. Epub 2025 Jun 22.

Abstract

Marine bacteria offer a promising alternative for developing Engineered Living Materials (ELMs) tailored to marine applications. We engineered to increase its surface-associated growth and develop biosensors for ocean environment monitoring. By fusing the endogenous extracellular matrix amyloidogenic protein CsgA with mussel foot proteins, we significantly increased biofilm formation. Additionally, was engineered to express the tyrosinase enzyme to further enhance microbial attachment through post-translational modifications of tyrosine residues. By exploiting natural genetic resources, two environmental biosensors were created to detect temperature and oxygen. These biosensors were coupled with a CRISPR-based recording system to store transient gene expression in stable DNA arrays, enabling long-term environmental monitoring. These engineered strains highlight potential in advancing marine microbiome engineering for innovative biofilm applications, including the development of natural, self-renewing biological adhesives, environmental sensors, and "sentinel" cells equipped with CRISPR-recording technology to capture and store environmental signals.

摘要

海洋细菌为开发适用于海洋应用的工程活材料(ELMs)提供了一个有前景的替代方案。我们对其进行工程改造以增加其与表面相关的生长,并开发用于海洋环境监测的生物传感器。通过将内源性细胞外基质淀粉样生成蛋白CsgA与贻贝足蛋白融合,我们显著增加了生物膜的形成。此外,对其进行工程改造以表达酪氨酸酶,通过酪氨酸残基的翻译后修饰进一步增强微生物附着。通过利用其天然遗传资源,创建了两种环境生物传感器来检测温度和氧气。这些生物传感器与基于CRISPR的记录系统相结合,以在稳定的DNA阵列中存储瞬时基因表达,从而实现长期环境监测。这些工程菌株突出了其在推进海洋微生物组工程以实现创新生物膜应用方面的潜力,包括开发天然、自我更新的生物粘合剂、环境传感器以及配备CRISPR记录技术以捕获和存储环境信号的“哨兵”细胞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索