Wang Chenchen, Ju Jiang, Fu Chao, Bao Bingbo, Ren Tianhui, Li Yanan, Wang Yuan, Han Sheng, Wang Yuan, Huang Xuan, Hu Hongxing, Zheng Xianyou
Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China.
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China.
J Extracell Vesicles. 2025 Jun;14(6):e70098. doi: 10.1002/jev2.70098.
Despite remarkable progress in total joint arthroplasty, aseptic loosening of titanium (Ti) alloy persists as a critical clinical challenge due to the poor wear resistance and biological inertness of such implants. Targeting of inflammatory osteolysis and remodelling of the osseointegration environment represent promising therapeutic approaches to address this issue. In this study, we developed a novel engineered extracellular vesicles (EVs) with a tag of dextran sulfate (DS-EVs) via metabolic glycan labelling (MGL)-mediated click chemistry. This targeted delivery of EVs, derived from metabolically engineered stem cells, establishes a new cell-free therapeutic system for periprosthetic osteolysis. DS-EVs demonstrated specific macrophage tropism, effectively reprogramming macrophage polarisation from pro-inflammatory M1 to regenerative M2 phenotypes. This phenotypic shift attenuated osteoclastogenesis while enhancing osseointegration through GPC6/Wnt pathway activation in vitro. Furthermore, we designed a multifunctional 3D titanium alloy scaffold with MXene-PVA composite hydrogel coatings (Ti-PPM scaffold). The multifunctional Ti-PPM composite scaffold, incorporating DS-EVs, provides a robust delivery system for periprosthetic osteolysis. This integrated system exhibits dual advantages of enhanced wear resistance and optimised interfacial adhesion, while enabling controlled EV release to maximize DS-EVs' osseointegration potential in vivo. Collectively, our findings establish DS-EVs as a transformative therapeutic modality for periprosthetic osteolysis through dual modulation of the osseointegration microenvironment and macrophage phenotypic heterogeneity.
尽管全关节置换术取得了显著进展,但由于钛(Ti)合金植入物耐磨性差和生物惰性,无菌性松动仍然是一个关键的临床挑战。针对炎症性骨溶解和骨整合环境的重塑是解决这一问题的有前景的治疗方法。在本研究中,我们通过代谢聚糖标记(MGL)介导的点击化学开发了一种带有硫酸葡聚糖标签的新型工程化细胞外囊泡(DS-EVs)。这种源自代谢工程干细胞的靶向递送细胞外囊泡建立了一种用于假体周围骨溶解的新型无细胞治疗系统。DS-EVs表现出对巨噬细胞的特异性趋向性,有效地将巨噬细胞极化从促炎性M1重编程为再生性M2表型。这种表型转变在体外通过激活GPC6/ Wnt途径减弱破骨细胞生成,同时增强骨整合。此外,我们设计了一种带有MXene-PVA复合水凝胶涂层的多功能三维钛合金支架(Ti-PPM支架)。结合DS-EVs的多功能Ti-PPM复合支架为假体周围骨溶解提供了一个强大的递送系统。这种集成系统具有增强耐磨性和优化界面粘附的双重优势,同时能够控制细胞外囊泡的释放,以最大限度地发挥DS-EVs在体内的骨整合潜力。总的来说,我们的研究结果通过对骨整合微环境和巨噬细胞表型异质性的双重调节,将DS-EVs确立为一种用于假体周围骨溶解的变革性治疗方式。