González Myriam, Romero Maria P
Escuela Politécnica Nacional, Departamento de Materiales, Quito, 170143, Ecuador.
Int J Nanomedicine. 2025 Jun 16;20:7715-7741. doi: 10.2147/IJN.S508181. eCollection 2025.
Carbon dots (CDs) have become versatile nanomaterials that have found practical applications in cancer therapy due to their small size, tunable photoluminescence, and high biocompatibility. Modified CDs have shown remarkable potential in targeted drug delivery systems, enhancing solubility and specificity in tumor sites while minimizing systemic toxicity. Gene therapy applications take advantage of the ability of CDs to condense and protect genetic material from degradation, thereby facilitating efficient cellular uptake. Furthermore, metal-doped CDs can function as fluorophores and enhance imaging capabilities for tumor detection through fluorescence and MRI. Besides, in phototherapy applications, when combining photodynamic (PDT) and photothermal therapy (PTT), CDs exhibit synergistic effects wherein therapeutic efficacy is increased by the generation of reactive oxygen species (ROS) and heat. This review summarizes recent developments in surface-modified and doped CDs for in vitro and in vivo applications, particularly in drug delivery, gene therapy, multimodal imaging, photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT), sonodynamic therapy (SDT) and gas therapy, for cancer therapies. Advances in modalities of surface modification that include ligand binding and metal doping have significantly improved CDs' biocompatibility and targeting precision. However, limitations such as low drug-loading capacity, complex synthesis processes, and the challenges created by hypoxic tumor environments need to be opened for further research. Future directions will focus on enhancing drug-loading efficiency, establishing long-term biocompatibility, and optimizing multifunctional nanocomposite designs for integrated cancer therapies.
碳点(CDs)已成为多功能纳米材料,由于其尺寸小、光致发光可调节以及生物相容性高,已在癌症治疗中得到实际应用。改性碳点在靶向给药系统中显示出显著潜力,可提高在肿瘤部位的溶解度和特异性,同时将全身毒性降至最低。基因治疗应用利用了碳点凝聚和保护遗传物质不被降解的能力,从而促进细胞有效摄取。此外,金属掺杂的碳点可作为荧光团,通过荧光和磁共振成像增强肿瘤检测的成像能力。此外,在光疗应用中,当结合光动力疗法(PDT)和光热疗法(PTT)时,碳点表现出协同效应,即通过产生活性氧(ROS)和热量提高治疗效果。本文综述了表面改性和掺杂碳点在体外和体内应用的最新进展,特别是在药物递送、基因治疗、多模态成像、光动力疗法(PDT)、光热疗法(PTT)、化学动力疗法(CDT)、声动力疗法(SDT)和气体疗法等癌症治疗方面的进展。包括配体结合和金属掺杂在内的表面改性方式的进展显著提高了碳点的生物相容性和靶向精度。然而,诸如低载药量、复杂的合成过程以及缺氧肿瘤环境带来的挑战等局限性仍需进一步研究。未来的方向将集中在提高载药效率、建立长期生物相容性以及优化用于综合癌症治疗的多功能纳米复合材料设计上。
Int J Nanomedicine. 2025-6-16
Nanomedicine (Lond). 2025-7
Arch Ital Urol Androl. 2025-6-30
J Mater Chem B. 2025-1-2
Nitric Oxide. 2024-10-1
Colloids Surf B Biointerfaces. 2023-9
Ultrason Sonochem. 2023-3
Photodiagnosis Photodyn Ther. 2023-3
Eur J Pharm Biopharm. 2023-3