Suppr超能文献

谁能从辅助化疗中获益?使用机器学习算法识别肝内胆管癌患者根治性切除术后的早期复发情况。

Who benefits from adjuvant chemotherapy? Identification of early recurrence in intrahepatic cholangiocarcinoma patients after curative-intent resection using machine learning algorithms.

作者信息

Li Qi, Liu Hengchao, Ma Yubo, Tang Zhenqi, Chen Chen, Zhang Dong, Geng Zhimin

机构信息

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

出版信息

Front Oncol. 2025 Jun 6;15:1594200. doi: 10.3389/fonc.2025.1594200. eCollection 2025.

Abstract

OBJECTIVE

It is vital to enhance the identification of early recurrence in intrahepatic cholangiocarcinoma (ICC) patients after curative-intent resection and to determine which patients could benefit from adjuvant chemotherapy (ACT). This study aimed to evaluate the effectiveness of machine learning algorithms in detecting early recurrence in ICC patients and select those who would benefit from ACT to improve prognosis.

METHODS

The study analyzed 254 intrahepatic cholangiocarcinoma (ICC) patients who underwent curative-intent resection to identify early recurrence predictors. Through logistic regression and feature importance analysis, we determined key risk factors and subsequently developed machine learning models utilizing the top five predictors for early recurrence prediction. The predictive performance was validated across area under the ROC curve (AUC).

RESULTS

Early recurrence was an independent prognostic risk factor for overall survival (OS) in ICC patients after curative resection (<0.001). The feature importance ranking based on machine learning algorithms showed that AJCC 8th edition N stage, number of tumors, T stage, perineural invasion, and CA125 as the top five variables associated with early recurrence, which was consistent with the independent risk factors of multivariate logistic regression model. Using the aforementioned five variables, we developed four machine learning prediction models, including logistic regression, support vector machine, LightGBM, and random forest. In the training set, the AUC values were 0.849, 0.860, 0.852, and 0.850, respectively. In the testing set, the AUC values were 0.804, 0.807, 0.841, and 0.835, respectively. Among the various prediction models, LightGBM demonstrated superior performance compared to other models in the testing set, exhibiting higher sensitivity, specificity, and accuracy. The effectiveness of ACT on prognosis for different recurrence times, as predicted by the LightGBM model, indicated that ACT could significantly prolong median OS and RFS for ICC patients predicted to experience early recurrence in both the training and testing sets (<0.05). Conversely, for ICC patients predicted to have late recurrence, ACT did not improve OS and RFS (>0.05).

CONCLUSION

The prediction models established in this study demonstrate good predictive capability and can be used to identify patients who may benefit from ACT.

摘要

目的

提高肝内胆管癌(ICC)患者根治性切除术后早期复发的识别能力,并确定哪些患者能从辅助化疗(ACT)中获益至关重要。本研究旨在评估机器学习算法在检测ICC患者早期复发中的有效性,并筛选出能从ACT中获益以改善预后的患者。

方法

本研究分析了254例行根治性切除的肝内胆管癌(ICC)患者,以确定早期复发的预测因素。通过逻辑回归和特征重要性分析,我们确定了关键风险因素,随后利用早期复发预测的前五个预测因素建立了机器学习模型。预测性能通过ROC曲线下面积(AUC)进行验证。

结果

早期复发是ICC患者根治性切除术后总生存(OS)的独立预后风险因素(<0.001)。基于机器学习算法的特征重要性排名显示,美国癌症联合委员会(AJCC)第8版N分期、肿瘤数量、T分期、神经周围侵犯和CA125是与早期复发相关的前五个变量,这与多变量逻辑回归模型的独立风险因素一致。利用上述五个变量,我们建立了四个机器学习预测模型,包括逻辑回归、支持向量机、LightGBM和随机森林。在训练集中,AUC值分别为0.849、0.860、0.852和0.850。在测试集中,AUC值分别为0.804、0.807、0.841和0.835。在各种预测模型中,LightGBM在测试集中表现出优于其他模型的性能,具有更高的敏感性、特异性和准确性。LightGBM模型预测的ACT对不同复发时间预后的有效性表明,ACT可显著延长训练集和测试集中预测会早期复发的ICC患者的中位OS和RFS(<0.05)。相反对于预测为晚期复发的ICC患者,ACT并未改善OS和RFS(>0.05)。

结论

本研究建立的预测模型具有良好的预测能力,可用于识别可能从ACT中获益的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4247/12178869/fde1a32a2486/fonc-15-1594200-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验