Lee Jeongbin, Noh Jae-Hong, Kim Jung-Tae, Lee Dongjun, Choi Ji Hyeon, Lee Jeong-Min, Ahn Ji-Hoon, Park Tae Joo, Kim Woo-Hee
Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea.
BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea.
ACS Appl Mater Interfaces. 2025 Jul 2;17(26):38608-38618. doi: 10.1021/acsami.5c04779. Epub 2025 Jun 23.
Atomic layer etching (ALE) that interacts synergistically with area-selective deposition significantly enhances its accuracy, establishing it as a key technique for the precise control of material deposition and removal in the manufacturing of sub-10 nm nanoelectronics. In this study, we report a method for selectively performing ALE on various metal oxides, including ZnO, MgO, AlO, YO, SiO, and ZrO, using acetylacetone (Hacac) and ozone (O). This approach exploits the unique chelate coordination properties of β-diketonates, in which two oxygen atoms can simultaneously attach to a single metal center, forming highly volatile chelate complexes. By leveraging these properties, we demonstrate the potential for selective ALE based on the oxidation state of the metal in these compounds, facilitating the formation of volatile metal-ligand complexes and enabling precise, oxidation state-dependent material removal. The selective ALE characteristics are validated through various analytical techniques, including X-ray fluorescence, spectroscopic ellipsometry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy mapping. Additionally, the layer-by-layer etching is elucidated through the use of an quartz crystal microbalance, while an residual gas analyzer tracks the etching dynamics and uncovers the underlying mechanism. This approach offers a method for tailoring etch processes to the unique properties of target materials, providing the precise control and selectivity essential for nanoscale precision. The ability to selectively remove specific materials enables the advancement of innovative designs and complex architectures in cutting-edge nanoelectronics.
与区域选择性沉积协同作用的原子层蚀刻(ALE)显著提高了其精度,使其成为亚10纳米纳米电子制造中精确控制材料沉积和去除的关键技术。在本研究中,我们报告了一种使用乙酰丙酮(Hacac)和臭氧(O)对包括ZnO、MgO、AlO、YO、SiO和ZrO在内的各种金属氧化物选择性进行ALE的方法。这种方法利用了β - 二酮的独特螯合配位特性,其中两个氧原子可以同时附着到单个金属中心,形成高挥发性的螯合配合物。通过利用这些特性,我们证明了基于这些化合物中金属氧化态的选择性ALE的潜力,促进了挥发性金属 - 配体配合物的形成,并实现了精确的、依赖于氧化态的材料去除。通过各种分析技术验证了选择性ALE特性,包括X射线荧光、光谱椭偏仪、扫描电子显微镜和能量色散X射线光谱映射。此外,通过使用石英晶体微天平阐明了逐层蚀刻,而残余气体分析仪跟踪蚀刻动力学并揭示其潜在机制。这种方法提供了一种根据目标材料的独特特性定制蚀刻工艺的方法,为纳米级精度提供了必不可少的精确控制和选择性。选择性去除特定材料的能力推动了前沿纳米电子学中创新设计和复杂架构的发展。