Li Cheng, Luo Xuyu, Wang Ying, Zhu Mingze, Li Dan, Guo Shiying, Wang Wei, Xu Xiaoyong
School of Physical Science and Technology & Interdisciplinary Research Center, Yangzhou University, Yangzhou, Jiangsu, 225002, China.
Jiuchang New Energy Technology Co., LTD, Yangzhou, 225001, China.
Adv Sci (Weinh). 2025 Jun 23:e08013. doi: 10.1002/advs.202508013.
Alkaline (ALK) electrolysis is an important means to generate green hydrogen from water splitting, and its technical advance hinges critically on the breakthrough of catalytic electrodes capable of high current densities at low overpotentials. Here, an efficient and robust hydrogen-evolving electrode is developed, composed of cobalt oxide (CoO) nanosheet catalyst with a metal cobalt transition interface on the current-collecting nickel wire mesh substrate. This CoO electrode affords a unique charge avalanche effect at the metal-semiconductor interface to concentrate electron release and thus enables high-current-density hydrogen evolving at 1000 mA cm with only 207 mV overpotential, far outperforming commercial Raney nickel electrode that commonly delivers current densities below 500 mA cm at 300-500 mV overpotentials. An industrial cell-stack electrolyzer utilizing CoO electrodes achieves a consistent current density of 1000 mA cm at a 2.0 V cell voltage, surpassing the operational current density of commercial ALK systems by two to five times (200-500 mA cm). A significant enhancement in current output and a minimal deactivation rate of only 0.056 mV h demonstrate the potential of the CoO electrode to replace commercial Raney nickel electrode, thereby substantially improving the hydrogen production efficiency of ALK electrolyzers.
碱性(ALK)电解是通过水分解产生绿色氢气的重要手段,其技术进步关键取决于能够在低过电位下实现高电流密度的催化电极的突破。在此,开发了一种高效且耐用的析氢电极,它由在集流镍丝网基底上具有金属钴过渡界面的氧化钴(CoO)纳米片催化剂组成。这种CoO电极在金属 - 半导体界面处提供独特的电荷雪崩效应,以集中电子释放,从而能够在仅207 mV过电位下以1000 mA cm²的电流密度进行析氢,远远优于商业阮内镍电极,后者在300 - 500 mV过电位下通常提供低于500 mA cm²的电流密度。使用CoO电极的工业级电池堆电解槽在2.0 V的电池电压下实现了1000 mA cm²的一致电流密度,比商业ALK系统的运行电流密度高出两到五倍(200 - 500 mA cm²)。电流输出的显著提高以及仅0.056 mV h⁻¹的最小失活速率证明了CoO电极替代商业阮内镍电极的潜力,从而大幅提高ALK电解槽的制氢效率。