Kals Emma, Kals Morten, Cicuta Pietro, Rayner Julian C
Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
mBio. 2025 Jun 23:e0149925. doi: 10.1128/mbio.01499-25.
Malaria kills over 600,000 people annually, with all clinical symptoms arising from blood-stage infection. blood-stage replication happens primarily in the blood circulation, bone marrow, and spleen, where there are flow-generated forces, yet most growth assays are carried out in static conditions. We systematically tested the effect of orbital shaking on growth and linked it to the wall shear stress forces generated by the resultant fluid motion. Strikingly, there is a critical shaking speed, below which growth rates are reduced and above which growth increases. Forces at this critical speed correspond to previously measured forces in the microvasculature. Red blood cell invasion depends on two families of parasite attachment proteins, the erythrocyte-binding antigen and the reticulocyte-binding protein. Using a panel of knockouts, we show for the first time that several of these ligands have greater importance in high wall shear stress conditions, highlighting the importance of understanding the effect of fluid motion on parasite biology.IMPORTANCEMalaria parasite growth occurs in dynamic environments like blood circulation, where fluid forces impact red blood cells and parasites. Yet, most laboratory growth assays are conducted in static environments, failing to replicate these forces. We explored the effects of growing the parasites on orbital shakers, which generate biologically relevant forces, and found that shaking speed critically impacts parasite growth, with reduced growth at speeds that mimic forces in the microvasculature. Importantly, using these conditions revealed invasion phenotypes not observed under static conditions. Understanding how fluid dynamics influence parasite growth offers a new approach to investigating malaria pathogenesis, with the potential to improve the development of therapeutic interventions.
疟疾每年导致超过60万人死亡,所有临床症状均由血液阶段感染引起。血液阶段的复制主要发生在血液循环、骨髓和脾脏中,这些部位存在流体产生的力,但大多数生长试验是在静态条件下进行的。我们系统地测试了轨道振荡对生长的影响,并将其与由此产生的流体运动所产生的壁面剪切应力联系起来。令人惊讶的是,存在一个临界振荡速度,低于该速度生长速率降低,高于该速度生长增加。这个临界速度下的力与先前在微脉管系统中测量到的力相对应。红细胞入侵取决于两类寄生虫附着蛋白,即红细胞结合抗原和网织红细胞结合蛋白。通过一组基因敲除实验,我们首次表明其中几种配体在高壁面剪切应力条件下具有更重要的作用,突出了理解流体运动对寄生虫生物学影响的重要性。
重要性
疟原虫的生长发生在诸如血液循环等动态环境中,在这种环境中流体力会影响红细胞和寄生虫。然而,大多数实验室生长试验是在静态环境中进行的,无法复制这些力。我们探索了在轨道振荡器上培养寄生虫的效果,轨道振荡器会产生与生物学相关的力,并且发现振荡速度对寄生虫生长有至关重要的影响,在模拟微脉管系统中力的速度下生长会降低。重要的是,利用这些条件揭示了在静态条件下未观察到的入侵表型。了解流体动力学如何影响寄生虫生长为研究疟疾发病机制提供了一种新方法,有可能改善治疗干预措施的开发。