Kaneko Shun, Ueda Keisuke, Hakata Rei, Higashi Kenjirou, Ito Masataka, Noguchi Shuji, Moribe Kunikazu
Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
Mol Pharm. 2025 Jul 7;22(7):4091-4100. doi: 10.1021/acs.molpharmaceut.5c00345. Epub 2025 Jun 23.
Drug amorphous solubility can be changed in the presence of other compounds, making it essential to elucidate the underlying mechanisms for designing supersaturated formulations. In this study, we experimentally determined how a second drug affects the amorphous solubility of ritonavir (RTV) and analyzed these effects from a thermodynamic perspective. Lopinavir (LPV), cilnidipine (CND), and probucol (PBC) were used as second drugs. The coexistence of each second drug in an aqueous solution reduced the amorphous solubility of RTV. In the presence of LPV and CND, the experimentally determined RTV amorphous solubility was close to the value predicted under the assumption of ideal mixing of RTV and second drugs. In contrast, in the presence of PBC, the experimentally determined RTV amorphous solubility exceeded the predicted value. Dynamic vapor sorption (DVS) measurements revealed that the RTV/LPV coamorphous absorbed water similarly to amorphous RTV. Conversely, water absorption in the RTV/CND and RTV/PBC coamorphous decreased compared with amorphous RTV. Using the experimentally determined amorphous solubilities and water absorption data, the interaction parameters between RTV and each second drug within the water-saturated drug-rich phase were calculated. The absolute value of the interaction parameter in the RTV/LPV system is relatively small, suggesting that incorporating LPV into the RTV-rich phase had minimal impact on water absorption and drug-drug interaction strength in the RTV-rich phase, resulting in experimentally determined solubility values that align closely with those predicted by ideal mixing of RTV and LPV. Meanwhile, the interaction parameters of the RTV/CND and RTV/PBC systems were negative, indicating relatively strong drug-drug interactions that can further reduce RTV amorphous solubility. However, for these two systems, the mixing of second drugs also decreased the water content in the RTV-rich phase, which would mitigate the extent of the solubility reduction. In the RTV/CND system, the strong drug-drug interaction and reduced water content largely offset each other. This results in an experimentally determined RTV amorphous solubility similar to the value predicted by the ideal mixing of RTV and CND. In contrast, in the RTV/PBC system, the water content of the RTV-rich phase was more substantially decreased, leading to a higher experimentally determined value of RTV amorphous solubility than that predicted by ideal mixing of RTV and PBC. Overall, this study elucidates the impact of a second drug on the amorphous solubility of a primary drug and provides valuable insights for the design of supersaturated formulations containing multiple drugs.
在其他化合物存在的情况下,药物的无定形溶解度可能会发生变化,这使得阐明设计过饱和制剂的潜在机制至关重要。在本研究中,我们通过实验确定了第二种药物如何影响利托那韦(RTV)的无定形溶解度,并从热力学角度分析了这些影响。洛匹那韦(LPV)、西尼地平(CND)和普罗布考(PBC)被用作第二种药物。每种第二种药物在水溶液中的共存都会降低RTV的无定形溶解度。在LPV和CND存在的情况下,实验测定的RTV无定形溶解度接近在RTV与第二种药物理想混合假设下预测的值。相比之下,在PBC存在的情况下,实验测定的RTV无定形溶解度超过了预测值。动态蒸汽吸附(DVS)测量表明,RTV/LPV共无定形物吸收水分的情况与无定形RTV相似。相反,与无定形RTV相比,RTV/CND和RTV/PBC共无定形物中的水分吸收减少。利用实验测定的无定形溶解度和水分吸收数据,计算了水饱和富药相中RTV与每种第二种药物之间的相互作用参数。RTV/LPV系统中相互作用参数的绝对值相对较小,这表明将LPV掺入富RTV相中对富RTV相中的水分吸收和药物-药物相互作用强度影响最小,导致实验测定的溶解度值与RTV和LPV理想混合预测的值非常接近。同时,RTV/CND和RTV/PBC系统的相互作用参数为负,表明药物-药物相互作用相对较强,可进一步降低RTV的无定形溶解度。然而,对于这两个系统,第二种药物的混合也降低了富RTV相中的水分含量,这将减轻溶解度降低的程度。在RTV/CND系统中,强烈的药物-药物相互作用和水分含量降低在很大程度上相互抵消。这导致实验测定的RTV无定形溶解度与RTV和CND理想混合预测的值相似。相比之下,在RTV/PBC系统中,富RTV相中的水分含量下降更为显著,导致实验测定的RTV无定形溶解度值高于RTV和PBC理想混合预测的值。总体而言,本研究阐明了第二种药物对主要药物无定形溶解度的影响,并为设计含有多种药物的过饱和制剂提供了有价值的见解。