Suppr超能文献

使用改进的联合多任务稀疏典型相关分析算法鉴定阿尔茨海默病外周血基因表达与脑脊液生物标志物之间的关联

Identification of Associations Between Peripheral Blood Gene Expression and Cerebrospinal Fluid Biomarkers in Alzheimer's Disease Using an Improved Joint Multi-Task Sparse Canonical Correlation Analysis Algorithm.

作者信息

Wu Qianqian, Ma Zhihui, Wang Feng

机构信息

Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.

Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.

出版信息

Appl Biochem Biotechnol. 2025 Jun 23. doi: 10.1007/s12010-025-05297-y.

Abstract

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder, and early diagnosis is crucial for effective clinical intervention. Traditional diagnostic methods involve detecting living brain tissue across the blood-brain barrier, but these invasive procedures cause unavoidable damage to patients. Genetic biomarkers in peripheral blood may provide valuable insights into brain lesions, potentially offering a non-invasive method for early AD diagnosis. The aim of this study is to propose an improved joint multi-task sparse canonical correlation analysis (MTSCCA) algorithm to identify significant genetic biomarkers in peripheral blood that correlate with brain markers of AD, such as cerebrospinal fluid (CSF) markers. This approach aims to accurately predict AD and assess disease progression. The study employs a multi-task sparse canonical correlation analysis (MTSCCA) approach with separate analyses for AD and healthy controls. Both tasks are constrained with class-consistent and class-specific conditions to identify significant features for each diagnostic group. To enhance robustness, the Laplacian matrix constraints were incorporated into the MTSCCA-LR algorithm to reduce noise in genetic data. The proposed algorithm identifies key differentially expressed genes (DEGs) that are involved in pathways closely linked to AD pathogenesis. These genes have specific diagnostic significance. Validation of these genes for predicting CSF markers was conducted using two regression models, showing good predictive accuracy. Furthermore, a Support Vector Machine (SVM) classifier was used to classify the two diagnostic groups, demonstrating high classification accuracy. The Top 20 genes identified using the proposed algorithm were used to construct an AD diagnostic model, which exhibited strong potential for non-invasive AD diagnosis, with significant implications for clinical practice. The code and example data of the proposed algorithm have been made publicly available on GitHub ( https://github.com/Zoe491/Improved-MTSCCA1 ).

摘要

阿尔茨海默病(AD)是一种不可逆的神经退行性疾病,早期诊断对于有效的临床干预至关重要。传统的诊断方法涉及检测穿过血脑屏障的活体脑组织,但这些侵入性程序会对患者造成不可避免的损害。外周血中的遗传生物标志物可能为脑损伤提供有价值的见解,有可能提供一种用于AD早期诊断的非侵入性方法。本研究的目的是提出一种改进的联合多任务稀疏典型相关分析(MTSCCA)算法,以识别外周血中与AD的脑标志物(如脑脊液(CSF)标志物)相关的重要遗传生物标志物。这种方法旨在准确预测AD并评估疾病进展。该研究采用多任务稀疏典型相关分析(MTSCCA)方法,对AD患者和健康对照进行单独分析。两个任务都受到类一致和类特定条件的约束,以识别每个诊断组的显著特征。为了提高鲁棒性,将拉普拉斯矩阵约束纳入MTSCCA-LR算法以减少遗传数据中的噪声。所提出的算法识别出参与与AD发病机制密切相关途径的关键差异表达基因(DEG)。这些基因具有特定的诊断意义。使用两个回归模型对这些基因预测CSF标志物进行了验证,显示出良好的预测准确性。此外,使用支持向量机(SVM)分类器对两个诊断组进行分类,显示出高分类准确性。使用所提出的算法识别出的前20个基因用于构建AD诊断模型,该模型在非侵入性AD诊断方面具有很强的潜力,对临床实践具有重要意义。所提出算法的代码和示例数据已在GitHub(https://github.com/Zoe491/Improved-MTSCCA1)上公开提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验