Ogunyemi Oludare M, Adeyeye Esther O, Macaulay Oladimeji S, Olabuntu Babatunde A, Achem J, Gyebi Gideon A, Olaiya Charles O, Sabiu Saheed
Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria.
Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
Mol Divers. 2025 Jun 23. doi: 10.1007/s11030-025-11255-x.
Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin signaling and a promising therapeutic target for the treatment of type 2 diabetes mellitus. Ocimum gratissimum (African basil) has been traditionally used and reported to enhance insulin sensitivity and promote glucose uptake, however, the molecular basis and active constituents responsible for these biological activities remain poorly characterized. The study focused on bioprospecting O. gratissimum for PTP1B inhibitors through machine learning (ML) and molecular modeling. Predictive ML models were developed using a curated IC bioactivity dataset of known PTP1B inhibitors from the ChEMBL database. Among 42 algorithms assessed, the Random Forest Regressor (RFR) exhibited the best performance and identified 49 compounds (pIC > 5) out of 156-screened phytochemicals. Molecular docking and 100-ns molecular dynamics (MD) simulations revealed luteolin, isovitexin, and morin as top binders, forming stable hydrogen bonds and hydrophobic interactions with key catalytic residues (CYS215 and ARG221) of PTP1B. Structural dynamics analysis further revealed the stability and conformational flexibility of the flavonoid-PTP1B complexes, while Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) binding free energy calculations supported their strong and favorable binding affinities in a dynamic environment. Overall, these findings suggest that luteolin, isovitexin, and morin may serve as potent, non-covalent PTP1B inhibitors, offering mechanistic insight into the insulin-sensitizing potential of O. gratissimum and supporting its ethnopharmacological use in diabetes management. Further experimental validation is recommended to explore and confirm their therapeutic relevance.
蛋白酪氨酸磷酸酶1B(PTP1B)是胰岛素信号传导的关键负调节因子,也是治疗2型糖尿病的一个有前景的治疗靶点。传统上,人们使用并报道过非洲罗勒(Ocimum gratissimum)可增强胰岛素敏感性并促进葡萄糖摄取,然而,负责这些生物活性的分子基础和活性成分仍未得到充分表征。该研究聚焦于通过机器学习(ML)和分子建模对非洲罗勒进行生物勘探以寻找PTP1B抑制剂。使用来自ChEMBL数据库的已知PTP1B抑制剂的精选IC生物活性数据集开发了预测性ML模型。在评估的42种算法中,随机森林回归器(RFR)表现出最佳性能,并从156种筛选的植物化学物质中鉴定出49种化合物(pIC>5)。分子对接和100纳秒分子动力学(MD)模拟显示,木犀草素、异荭草素和桑色素是主要结合物,与PTP1B的关键催化残基(CYS215和ARG221)形成稳定的氢键和疏水相互作用。结构动力学分析进一步揭示了类黄酮 - PTP1B复合物的稳定性和构象灵活性,而分子力学 - 泊松 - 玻尔兹曼表面积(MM - PBSA)结合自由能计算支持了它们在动态环境中的强且有利的结合亲和力。总体而言,这些发现表明木犀草素、异荭草素和桑色素可能作为有效的非共价PTP1B抑制剂,为非洲罗勒的胰岛素增敏潜力提供了机制性见解,并支持其在糖尿病管理中的民族药理学应用。建议进一步进行实验验证以探索和确认它们的治疗相关性。