Suppr超能文献

基于泛基因组的鲍曼不动杆菌网络分析揭示了保守治疗靶点的格局。

Pangenome-based network analysis of Acinetobacter baumannii reveals the landscape of conserved therapeutic targets.

作者信息

Bhat Thejaswi, Kumar Manish, Ballamoole Krishna Kumar, Deekshit Vijaya Kumar, Gollapalli Pavan

机构信息

Center for Bioinformatics, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India.

Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Kotekar Beeri Road, Paneer Campus, Deralakatte, Mangaluru, 575018, Karnataka, India.

出版信息

Mol Divers. 2025 Jun 23. doi: 10.1007/s11030-025-11252-0.

Abstract

The increasing prevalence of Acinetobacter baumannii infections and its severity demand the acute necessity for innovative therapeutic targets against it. This study employs comprehensive pangenome analysis to investigate 124 A. baumannii multidrug-resistant strains, to determine the most promising therapeutic targets derived from its core genome. Nucleotide diversity analysis of core and variable gene clusters identified key polymorphisms, suggesting significant evolutionary adaptation. Our findings revealed significant presence/absence variation (PAV) in resistance genes across strains, with 97 antimicrobial drug resistance genes identified. Two gene clusters, cluster-288 and cluster-566, harbored resistance-related genes encoding for beta-lactamase and multidrug efflux pump, respectively, were identified from the core genome that plays a pivotal role in conferring multidrug resistance. The functional enrichment analysis of these gene clusters highlighted key proteins, such as penicillin-binding proteins and outer membrane efflux proteins, as potential targets for drug design. Furthermore, we analyzed the physicochemical properties, virulence potential, active site prediction, and predicted conserved motifs. Structural predictions via 3D modeling and molecular dynamics simulations revealed high stability of key proteins, with RMSD values of 0.52 nm for outer membrane channel subunit AdeK and 0.85 nm for beta-lactamase, suggesting these proteins' potential as novel drug targets and their structural integrity under physiological conditions. Principal component analysis (PCA) highlighted distinct motion patterns within these proteins, providing insights into their functional dynamics. This research contributes to ongoing efforts to combat antibiotic resistance through innovative approaches in drug design and therapeutic interventions.

摘要

鲍曼不动杆菌感染的日益流行及其严重性迫切需要针对它的创新治疗靶点。本研究采用全面的泛基因组分析来研究124株鲍曼不动杆菌多重耐药菌株,以确定源自其核心基因组的最有前景的治疗靶点。核心基因簇和可变基因簇的核苷酸多样性分析确定了关键的多态性,表明存在显著的进化适应性。我们的研究结果显示,各菌株的耐药基因存在显著的存在/缺失变异(PAV),共鉴定出97个抗菌药物耐药基因。从核心基因组中鉴定出两个基因簇,即cluster-288和cluster-566,分别含有编码β-内酰胺酶和多药外排泵的耐药相关基因,它们在赋予多重耐药性方面起关键作用。对这些基因簇的功能富集分析突出了关键蛋白,如青霉素结合蛋白和外膜外排蛋白,作为药物设计的潜在靶点。此外,我们分析了这些蛋白的理化性质、毒力潜力、活性位点预测和预测的保守基序。通过三维建模和分子动力学模拟进行的结构预测显示,关键蛋白具有高稳定性,外膜通道亚基AdeK的均方根偏差(RMSD)值为0.52纳米,β-内酰胺酶的RMSD值为0.85纳米,表明这些蛋白作为新型药物靶点的潜力及其在生理条件下的结构完整性。主成分分析(PCA)突出了这些蛋白内不同的运动模式,为其功能动力学提供了见解。本研究通过药物设计和治疗干预的创新方法,为正在进行的对抗抗生素耐药性的努力做出了贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验