Taniguti Cristiane H, Lau Jeekin, Hochhaus Tessa, Arias Diana C Lopez, Hokanson Stan C, Zlesak David C, Byrne David H, Klein Patricia E, Riera-Lizarazu Oscar
Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA.
Department of Horticultural Science, University of Minnesota, Saint Paul, Minnesota, USA.
Plant Genome. 2025 Jun;18(2):e70044. doi: 10.1002/tpg2.70044.
Roses (Rosa L.) are among the most economically important ornamentals worldwide, with ploidy ranging from diploid (2x) to hendecaploid (11x), though most cultivars are diploid (2x), triploid (3x), or tetraploid (4x). To enable large-scale analyses of ploidy and aneuploidy in roses using high-density single nucleotide polymorphism (SNP) array data, we developed Qploidy, an R package. Qploidy leverages tools for estimating allele dosage, adapts methods from human genetics for copy number estimation, and optimizes the standardization of allele intensity (R) and B allele frequency (BAF) for ploidy levels greater than 2x. With Qploidy, we analyzed a dataset of 1944 samples consisting of 588 samples from a germplasm collection and 1356 samples from 14 biparental mapping populations. The majority of genotypes in the germplasm collection were tetraploid (56%), followed by diploids (20%) and triploids (11%). The percentage of aneuploids was lower in the germplasm collection (2%) compared to biparental populations (16%). Reduced fitness likely explains the higher frequency of aneuploids in mapping populations compared to the germplasm collection, where stronger selective pressures normally act. In tetraploid biparental populations, pentasomy (65%) was significantly more common than trisomy (19%). Also, aneuploid states were predominantly transmitted through the female parent (87%), suggesting greater gametophyte sensitivity to chromosome number variation, particularly the loss of a chromosome. Since aneuploidy disturbs linkage and quantitative trait loci (QTL) analyses, Qploidy may also be used to guide the removal of aneuploid-affected data prior to downstream analysis. Besides roses, Qploidy can be used to study ploidy and aneuploidy in other polyploid species.
玫瑰(蔷薇属)是全球经济价值最重要的观赏植物之一,其倍性范围从二倍体(2x)到十一倍体(11x),不过大多数栽培品种为二倍体(2x)、三倍体(3x)或四倍体(4x)。为了利用高密度单核苷酸多态性(SNP)阵列数据对玫瑰的倍性和非整倍性进行大规模分析,我们开发了R包Qploidy。Qploidy利用估计等位基因剂量的工具,采用人类遗传学方法进行拷贝数估计,并针对大于2x的倍性水平优化等位基因强度(R)和B等位基因频率(BAF)的标准化。借助Qploidy,我们分析了一个包含1944个样本的数据集,其中包括来自种质资源库的588个样本和来自14个双亲作图群体的1356个样本。种质资源库中的大多数基因型为四倍体(56%),其次是二倍体(20%)和三倍体(11%)。与双亲群体(16%)相比,种质资源库中非整倍体的比例较低(2%)。与种质资源库相比,作图群体中非整倍体频率较高,这可能是由于适应性降低所致,在种质资源库中通常存在更强的选择压力。在四倍体双亲群体中,五体性(65%)比三体性(19%)明显更常见。此外,非整倍体状态主要通过母本传递(87%),这表明配子体对染色体数变异,特别是染色体丢失更为敏感。由于非整倍性会干扰连锁和数量性状位点(QTL)分析,Qploidy还可用于在下游分析之前指导去除受非整倍体影响的数据。除了玫瑰,Qploidy还可用于研究其他多倍体物种的倍性和非整倍性。