He Anqi, Xu Zhanghua, Li Guantong, Chen Lingyan, Zhang Huafeng, Li Bin, Li Yifan, Guo Xiaoyu, Li Zenglu, Guan Fengying
College of Environment and Safety Engineering, Academy of Geography and Ecological Environment, Fuzhou University, Fuzhou, China.
Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming, China.
Pest Manag Sci. 2025 Jun 24. doi: 10.1002/ps.70018.
Moso bamboo (Phyllostachys edulis) plays a pivotal role in the global carbon cycle because of its rapid growth and significant ecological benefits. Accurate estimation of its aboveground biomass (AGB) is therefore essential for effective carbon management. However, the influence of its primary leaf-feeding pest, Pantana phyllostachysae Chao (P. phyllostachysae), on AGB remains poorly understood, potentially compromising estimation accuracy. This study aims to develop allometric equations and integrate them with machine learning algorithms to accurately estimate the AGB of Moso bamboo forests under varying levels of pest stress.
Allometric equations exhibited strong estimation performance across all pest infestation levels, with R values exceeding 0.93, root mean square error (RMSE) values below 0.66 kg, and mean absolute error (MAE) values under 0.51 kg. Among the machine learning approaches evaluated, the Extreme Gradient Boosting (XGBoost) algorithm demonstrated superior performance, yielding an R of 0.8593, RMSE of 0.5176 kg, and MAE of 0.4313 kg. A clear negative correlation was identified between the severity of P. phyllostachysae infestation and AGB, with biomass values decreasing progressively from healthy to severely infested stands.
Incorporating pest factors into AGB estimation models significantly enhances model accuracy and captures the nuanced effects of pest stress on biomass accumulation. This integration improves model generalizability and ecological relevance, offering valuable insights for sustainable forest management and carbon accounting. The findings highlight the importance of explicitly considering pest dynamics in biomass modeling and carbon management strategies, laying a robust foundation for future research on pest-biomass interactions in forest ecosystems. © 2025 Society of Chemical Industry.
毛竹(Phyllostachys edulis)因其快速生长和显著的生态效益,在全球碳循环中发挥着关键作用。因此,准确估算其地上生物量(AGB)对于有效的碳管理至关重要。然而,其主要食叶害虫毛竹缺爪螨(Pantana phyllostachysae Chao,简称P. phyllostachysae)对AGB的影响仍知之甚少,这可能会影响估算的准确性。本研究旨在建立异速生长方程,并将其与机器学习算法相结合,以准确估算不同虫害胁迫水平下毛竹林的AGB。
异速生长方程在所有虫害侵染水平上均表现出强大的估算性能,R值超过0.93,均方根误差(RMSE)值低于0.66千克,平均绝对误差(MAE)值低于0.51千克。在评估的机器学习方法中,极端梯度提升(XGBoost)算法表现出卓越的性能,R值为0.8593,RMSE为0.5176千克,MAE为0.4313千克。研究发现,毛竹缺爪螨侵染的严重程度与AGB之间存在明显的负相关,生物量值从健康林分到重度侵染林分逐渐降低。
将虫害因素纳入AGB估算模型可显著提高模型准确性,并捕捉虫害胁迫对生物量积累的细微影响。这种整合提高了模型的通用性和生态相关性,为可持续森林管理和碳核算提供了有价值的见解。研究结果凸显了在生物量建模和碳管理策略中明确考虑虫害动态的重要性,为未来森林生态系统中虫害与生物量相互作用的研究奠定了坚实基础。© 2025化学工业协会