Suppr超能文献

水分亏缺期间玉米节根生长的维持:代谢适应及溶质沉积增加在渗透调节中的作用

Maize nodal root growth maintenance during water deficit: metabolic acclimation and the role of increased solute deposition in osmotic adjustment.

作者信息

McCubbin Tyler J, Greeley Laura A, Mertz Rachel A, Sen Sidharth, Griffith Amelia E, King-Miller Shannon K, Riggs Kara, Niehues Nicole D, Pareek Akanksha, Bryan Victoria J, Zeng Shuai, Becker Cheyenne, Ghani Abdul, Joshi Trupti, Peck Scott C, Oliver Melvin J, Fritschi Felix B, Braun David M, Sharp Robert E

机构信息

Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States.

Plant Genetics Research Unit, USDA-ARS, Columbia, MO, United States.

出版信息

Front Plant Sci. 2025 Jun 9;16:1566453. doi: 10.3389/fpls.2025.1566453. eCollection 2025.

Abstract

Maize ( L.) nodal roots are characterized by their ability to maintain elongation under water deficit conditions that inhibit the growth of other organs. Physiological and molecular mechanisms underlying this response were investigated using a divided-container root growth system to impose uniform and steady water deficit (WD) conditions around the nodal roots of maize cv. FR697. Kinematic growth analysis demonstrated that continued nodal root elongation under water deficit involves maintenance of both growth zone length and rates of cell production from the meristem. Nodal roots that maintain growth during WD exhibit increased rates of net solute deposition throughout the growth zone that enable osmotic adjustment and continued tissue expansion. These abilities differ from the maize primary root, which exhibits impairment of both cell expansion and cell production when grown under similar water deficit conditions. Integration of transcriptomic and metabolomic profiling revealed molecular signatures of nodal root growth maintenance, including central transcriptional responses and metabolic pathways related to osmolyte accumulation, hormone signaling, and ROS homeostasis. Several metabolic responses differed from previous characterization of the primary root, including taurine accumulation and proline synthesis via the saccharopine pathway. Further, our analysis showed that metabolic acclimation rather than transcriptional control dominated the water deficit response of the nodal root growth zone. The study highlights novel insights into the interplay of morphogenic and metabolic responses that regulate the remarkable ability of nodal roots to maintain elongation under water deficit conditions.

摘要

玉米(L.)的节根具有在水分亏缺条件下保持伸长的能力,而这种水分亏缺会抑制其他器官的生长。利用分隔容器根系生长系统,对玉米品种FR697节根周围施加均匀且稳定的水分亏缺(WD)条件,研究了这种反应背后的生理和分子机制。运动学生长分析表明,水分亏缺条件下节根的持续伸长涉及生长区长度的维持以及分生组织细胞产生速率的维持。在水分亏缺期间保持生长的节根在整个生长区表现出净溶质沉积速率增加,从而实现渗透调节和组织的持续扩张。这些能力与玉米初生根不同,玉米初生根在类似水分亏缺条件下生长时,细胞扩张和细胞产生都会受到损害。转录组学和代谢组学分析的整合揭示了节根生长维持的分子特征,包括与渗透溶质积累、激素信号传导和活性氧稳态相关的核心转录反应和代谢途径。一些代谢反应与之前对初生根的描述不同,包括牛磺酸积累和通过糖胺途径合成脯氨酸。此外,我们的分析表明,代谢适应而非转录控制主导了节根生长区对水分亏缺的反应。该研究突出了对形态发生和代谢反应相互作用的新见解,这些反应调节了节根在水分亏缺条件下保持伸长的卓越能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf5a/12183189/9f791d31bcdb/fpls-16-1566453-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验