Suppr超能文献

探索结构协方差网络对精神分裂症诊断的预测价值。

Exploring the predictive value of structural covariance networks for the diagnosis of schizophrenia.

作者信息

Vetter Clara S, Bender Annika, Dwyer Dominic B, Montembeault Max, Ruef Anne, Chisholm Katharine, Kambeitz-Ilankovic Lana, Antonucci Linda A, Ruhrmann Stephan, Kambeitz Joseph, Rosen Marlene, Lichtenstein Theresa, Riecher-Rössler Anita, Upthegrove Rachel, Salokangas Raimo K R, Hietala Jarmo, Pantelis Christos, Lencer Rebekka, Meisenzahl Eva, Wood Stephen J, Brambilla Paolo, Borgwardt Stefan, Falkai Peter, Bertolino Alessandro, Koutsouleris Nikolaos

机构信息

Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.

Munich Center of Machine Learning (MCML), Munich, Germany.

出版信息

Front Psychiatry. 2025 Jun 9;16:1570797. doi: 10.3389/fpsyt.2025.1570797. eCollection 2025.

Abstract

INTRODUCTION

Schizophrenia is a psychiatric disorder hypothesized to result from disturbed brain connectivity. Structural covariance networks (SCN) describe the shared variation in morphological properties emerging from coordinated neurodevelopmental processes, This study evaluates the potential of SCNs as diagnostic biomarker for schizophrenia.

METHODS

We compared the diagnostic value of two SCN computation methods derived from regional gray matter volume (GMV) in 154 patients with a diagnosis of first episode psychosis or recurrent schizophrenia (PAT) and 366 healthy control individuals (HC). The first method (REF-SCN) quantifies the contribution of an individual to a normative reference group's SCN, and the second approach (KLS-SCN) uses a symmetric version of Kulback-Leibler divergence. Their diagnostic value compared to regional GMV was assessed in a stepwise analysis using a series of linear support vector machines within a nested cross-validation framework and stacked generalization, all models were externally validated in an independent sample (N=71, N=74), SCN feature importance was assessed, and the derived risk scores were analyzed for differential relationships with clinical variables.

RESULTS

We found that models trained on SCNs were able to classify patients with schizophrenia and combining SCNs and regional GMV in a stacked model improved training (balanced accuracy (BAC)=69.96%) and external validation performance (BAC=67.10%). Among all unimodal models, the highest discovery sample performance was achieved by a model trained on REF-SCN (balanced accuracy (BAC=67.03%). All model decisions were driven by widespread structural covariance alterations involving the somato-motor, default mode, control, visual, and the ventral attention networks. Risk estimates derived from KLS-SCNs and regional GMV, but not REF-SCNs, could be predicted from clinical variables, especially driven by body mass index (BMI) and affect-related negative symptoms.

DISCUSSION

These patterns of results show that different SCN computation approaches capture different aspects of the disease. While REF-SCNs contain valuable information for discriminating schizophrenia from healthy control individuals, KLS-SCNs may capture more nuanced symptom-level characteristics similar to those captured by PCA of regional GMV.

摘要

引言

精神分裂症是一种精神障碍,据推测是由大脑连接紊乱所致。结构协方差网络(SCN)描述了由协调的神经发育过程产生的形态学特性的共享变化。本研究评估了SCN作为精神分裂症诊断生物标志物的潜力。

方法

我们比较了两种从区域灰质体积(GMV)得出的SCN计算方法在154例首次发作精神病或复发性精神分裂症患者(PAT)和366例健康对照个体(HC)中的诊断价值。第一种方法(REF-SCN)量化个体对规范参考组SCN的贡献,第二种方法(KLS-SCN)使用库尔贝克-莱布勒散度的对称版本。在嵌套交叉验证框架和堆叠泛化中使用一系列线性支持向量机的逐步分析中,评估了它们与区域GMV相比的诊断价值,所有模型均在独立样本(N = 71,N = 74)中进行外部验证,评估了SCN特征重要性,并分析了得出的风险评分与临床变量的差异关系。

结果

我们发现,基于SCN训练的模型能够对精神分裂症患者进行分类,并且在堆叠模型中结合SCN和区域GMV可提高训练效果(平衡准确率(BAC)= 69.96%)和外部验证性能(BAC = 67.10%)。在所有单峰模型中,基于REF-SCN训练的模型实现了最高的发现样本性能(平衡准确率(BAC = 67.03%))。所有模型决策均由涉及躯体运动、默认模式、控制、视觉和腹侧注意网络的广泛结构协方差改变驱动。从临床变量中可以预测出源自KLS-SCN和区域GMV而非REF-SCN的风险估计值,尤其是受体重指数(BMI)和情感相关阴性症状的驱动。

讨论

这些结果模式表明,不同的SCN计算方法捕捉到了疾病的不同方面。虽然REF-SCN包含将精神分裂症与健康对照个体区分开来的有价值信息,但KLS-SCN可能捕捉到更细微的症状水平特征,类似于区域GMV的主成分分析所捕捉到的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4447/12183260/559412a31bdc/fpsyt-16-1570797-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验