Suppr超能文献

V-ATP酶ATP6V0D1亚基在神经母细胞瘤细胞化疗耐药及椭圆玫瑰树碱诱导的细胞质空泡化中的作用

The Role of V-ATPase ATP6V0D1 Subunit in Chemoresistance and Ellipticine-Induced Cytoplasmic Vacuolation in Neuroblastoma Cells.

作者信息

Rychla M, Hrabeta J, Jencova P, Podhorska N, Eckschlager T

机构信息

Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 5, Czech Republic.

出版信息

Mol Cell Oncol. 2025 Jun 17;12(1):2518774. doi: 10.1080/23723556.2025.2518774. eCollection 2025.

Abstract

Drug resistance remains a major obstacle in neuroblastoma treatment. Lysosomal sequestration, facilitated by the V-ATPase proton pump, is one of the mechanisms of chemoresistance. Overexpression of the ATP6V0D1 subunit of V-ATPase, previously reported in various cancers, was also observed in ellipticine-resistant neuroblastoma cells in our study. Neuroblastoma cells also exhibited increased lysosomal capacity and vacuolation after ellipticine treatment. Knockdown of ATP6V0D1, but not ATP6V1H, enhanced ellipticine sensitivity, suppressed proliferation and migration, decreased lysosomal uptake, and induced G2/M arrest in neuroblastoma cell lines. Notably, inhibiting another V-ATPase subunit, ATP6V1H, had no effect, highlighting the specific role of ATP6V0D1 in drug resistance. Ellipticine-induced vacuolation, identified as endoplasmic reticulum swelling, lacked evidence of paraptosis. ATP6V0D1 knockdown suppressed this phenomenon, whereas ATP6V1H silencing did not. Our findings underscore the importance of ATP6V0D1 in neuroblastoma and suggest potential therapeutic strategies targeting V-ATPase for overcoming drug resistance.

摘要

耐药性仍然是神经母细胞瘤治疗中的一个主要障碍。由V-ATPase质子泵促进的溶酶体隔离是化疗耐药的机制之一。我们的研究在耐玫瑰树碱的神经母细胞瘤细胞中也观察到了先前在各种癌症中报道的V-ATPase的ATP6V0D1亚基的过表达。玫瑰树碱处理后,神经母细胞瘤细胞的溶酶体容量和空泡化也增加。敲低ATP6V0D1而不是ATP6V1H可增强玫瑰树碱敏感性,抑制增殖和迁移,减少溶酶体摄取,并在神经母细胞瘤细胞系中诱导G2/M期阻滞。值得注意的是,抑制另一个V-ATPase亚基ATP6V1H没有效果,突出了ATP6V0D1在耐药性中的特定作用。玫瑰树碱诱导的空泡化被确定为内质网肿胀,缺乏副凋亡的证据。敲低ATP6V0D1可抑制这种现象,而沉默ATP6V1H则不能。我们的研究结果强调了ATP6V0D1在神经母细胞瘤中的重要性,并提出了针对V-ATPase克服耐药性的潜在治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e331/12184147/8e3cf17054f2/KMCO_A_2518774_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验