Suppr超能文献

可解释的机器学习揭示了先兆子痫风险预测中的核糖体生物发生生物标志物。

Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.

作者信息

Chen Jingjing, Zhang Dan, Zhu Chengxiu, Lin Lin, Ye Kejun, Hua Ying, Peng Mengjia

机构信息

Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China.

Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

出版信息

Front Immunol. 2025 Jun 9;16:1595222. doi: 10.3389/fimmu.2025.1595222. eCollection 2025.

Abstract

BACKGROUND

Preeclampsia, a hypertensive disorder during pregnancy affecting 2-8% of pregnancies globally, remains a leading cause of maternal and fetal morbidity. Current diagnostic reliance on late-onset clinical features and suboptimal biomarkers underscores the need for early molecular predictors. Ribosome biogenesis, critical for cellular homeostasis, is hypothesized to drive placental dysfunction in PE, though its role remains underexplored.

METHODS

We integrated placental transcriptomic data from two datasets (GSE75010, GSE10588) to systematically investigate ribosome biogenesis dysregulation in preeclampsia. Functional enrichment analyses delineated the dysregulation of pathways, while weighted gene co-expression network analysis identified hub genes within ribosome biogenesis-associated modules. A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. Immune microenvironment profiling and regulatory network analyses elucidated mechanistic links. Finally, qRT-PCR confirmed the differential expression of key genes in clinical samples.

RESULTS

We identified 25 ribosome biogenesis-related differentially expressed genes, which were significantly enriched in RNA degradation and rRNA processing. Weighted gene co-expression network analysis prioritized seven hub genes. A random forest model incorporating six key feature genes (, , , , , ) demonstrated robust diagnostic performance, achieving an AUC of 0.972 in the training dataset and 0.917 in the validation dataset. SHapley Additive exPlanations interpretability analysis revealed as the dominant risk contributor, while exhibited a protective effect. Regulatory network reconstruction identified 32 transcription factors, 24 RNA-binding proteins, and 62 miRNAs as putative upstream regulators of key genes. Immune Microenvironment Profiling linked key genes to altered placental immune cell populations. qRT-PCR confirmed that and expression decreased and and expression increased in clinical placental samples of preeclampsia group.

CONCLUSION

This study identifies ribosome biogenesis as one of the pivotal molecular mechanisms to PE pathogenesis, leveraging SHAP-interpretable machine learning to pinpoint six biomarkers. Future research is requisite for the validation of CRISPR and the integration of multi-omics to translate the findings into clinical diagnosis and targeted therapy.

摘要

背景

子痫前期是一种妊娠期高血压疾病,全球2%-8%的妊娠会受到影响,仍然是孕产妇和胎儿发病的主要原因。目前对晚期临床特征和欠佳生物标志物的诊断依赖凸显了对早期分子预测指标的需求。核糖体生物合成对细胞稳态至关重要,据推测它会导致子痫前期的胎盘功能障碍,但其作用仍未得到充分探索。

方法

我们整合了来自两个数据集(GSE75010、GSE10588)的胎盘转录组数据,以系统研究子痫前期中核糖体生物合成的失调。功能富集分析描绘了通路的失调,而加权基因共表达网络分析确定了核糖体生物合成相关模块内的枢纽基因。采用多算法机器学习框架来优化预测性能,通过SHapley加性解释实现模型可解释性,并通过受试者工作特征曲线验证诊断准确性。免疫微环境分析和调控网络分析阐明了机制联系。最后,qRT-PCR证实了临床样本中关键基因的差异表达。

结果

我们鉴定出25个与核糖体生物合成相关的差异表达基因,它们在RNA降解和rRNA加工中显著富集。加权基因共表达网络分析确定了7个枢纽基因。一个包含6个关键特征基因(,,,,,)的随机森林模型表现出强大的诊断性能,在训练数据集中的AUC为0.972,在验证数据集中为0.917。SHapley加性解释可解释性分析表明是主要的风险贡献因素,而具有保护作用。调控网络重建确定了32个转录因子、24个RNA结合蛋白和62个miRNA作为关键基因的假定上游调节因子。免疫微环境分析将关键基因与胎盘免疫细胞群体的改变联系起来。qRT-PCR证实,子痫前期组临床胎盘样本中的和表达降低,而和表达增加。

结论

本研究确定核糖体生物合成是子痫前期发病机制的关键分子机制之一,利用可由SHAP解释的机器学习来确定6个生物标志物。未来需要开展研究以验证CRISPR并整合多组学,将研究结果转化为临床诊断和靶向治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed5/12183210/b0b41b458b0b/fimmu-16-1595222-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验