Suppr超能文献

基于功能磁共振成像数据的多图谱集成图神经网络模型用于重度抑郁症检测

Multi-atlas ensemble graph neural network model for major depressive disorder detection using functional MRI data.

作者信息

Alotaibi Nojod M, Alhothali Areej M, Ali Manar S

机构信息

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Front Comput Neurosci. 2025 Jun 9;19:1537284. doi: 10.3389/fncom.2025.1537284. eCollection 2025.

Abstract

Major depressive disorder (MDD) is one of the most common mental disorders, with significant impacts on many daily activities and quality of life. It stands as one of the most common mental disorders globally and ranks as the second leading cause of disability. The current diagnostic approach for MDD primarily relies on clinical observations and patient-reported symptoms, overlooking the diverse underlying causes and pathophysiological factors contributing to depression. Therefore, scientific researchers and clinicians must gain a deeper understanding of the pathophysiological mechanisms involved in MDD. There is growing evidence in neuroscience that depression is a brain network disorder, and the use of neuroimaging, such as magnetic resonance imaging (MRI), plays a significant role in identifying and treating MDD. Rest-state functional MRI (rs-fMRI) is among the most popular neuroimaging techniques used to study MDD. Deep learning techniques have been widely applied to neuroimaging data to help with early mental health disorder detection. Recent years have seen a rise in interest in graph neural networks (GNNs), which are deep neural architectures specifically designed to handle graph-structured data like rs-fMRI. This research aimed to develop an ensemble-based GNN model capable of detecting discriminative features from rs-fMRI images for the purpose of diagnosing MDD. Specifically, we constructed an ensemble model by combining functional connectivity features from multiple brain region segmentation atlases to capture brain complexity and detect distinct features more accurately than single atlas-based models. Further, the effectiveness of our model is demonstrated by assessing its performance on a large multi-site MDD dataset. We applied the synthetic minority over-sampling technique (SMOTE) to handle class imbalance across sites. Using stratified 10-fold cross-validation, the best performing model achieved an accuracy of 75.80%, a sensitivity of 88.89%, a specificity of 61.84%, a precision of 71.29%, and an F1-score of 79.12%. The results indicate that the proposed multi-atlas ensemble GNN model provides a reliable and generalizable solution for accurately detecting MDD.

摘要

重度抑郁症(MDD)是最常见的精神障碍之一,对许多日常活动和生活质量有重大影响。它是全球最常见的精神障碍之一,也是导致残疾的第二大主要原因。目前MDD的诊断方法主要依赖于临床观察和患者报告的症状,忽略了导致抑郁症的多种潜在原因和病理生理因素。因此,科研人员和临床医生必须更深入地了解MDD所涉及的病理生理机制。神经科学领域越来越多的证据表明,抑郁症是一种脑网络疾病,而使用神经成像技术,如磁共振成像(MRI),在识别和治疗MDD方面发挥着重要作用。静息态功能磁共振成像(rs-fMRI)是用于研究MDD的最流行的神经成像技术之一。深度学习技术已广泛应用于神经成像数据,以帮助早期检测心理健康障碍。近年来,对图神经网络(GNN)的兴趣有所增加,GNN是专门设计用于处理像rs-fMRI这样的图结构数据的深度神经架构。本研究旨在开发一种基于集成的GNN模型,该模型能够从rs-fMRI图像中检测出判别特征,以诊断MDD。具体而言,我们通过组合来自多个脑区分割图谱的功能连接特征构建了一个集成模型,以捕捉大脑的复杂性,并比基于单个图谱的模型更准确地检测出不同特征。此外,通过在一个大型多站点MDD数据集上评估模型的性能,证明了我们模型的有效性。我们应用合成少数类过采样技术(SMOTE)来处理各站点之间的类别不平衡问题。使用分层10折交叉验证,表现最佳的模型的准确率达到75.80%,灵敏度为88.89%,特异性为61.84%,精确率为71.29%,F1分数为79.12%。结果表明,所提出的多图谱集成GNN模型为准确检测MDD提供了一种可靠且可推广的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f0c/12183270/2346c65ee299/fncom-19-1537284-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验