Baker Jared G, Koehler Stephen J, Wood Katherine J, Troya Diego, Gloriod Joey, Anderson Ian C, Gomez Darwin C, Figg C Adrian
Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202509029. doi: 10.1002/anie.202509029. Epub 2025 Jul 2.
Many acrylic-methacrylic block copolymer sequences remain inaccessible due to synthetic limitations. Herein, photoinduced electron/energy transfer (PET) catalysis is leveraged to reverse blocking order limitations in trithiocarbonate (TTC)-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. We synthesized poly(methyl acrylate-b-methyl methacrylate) by PET-RAFT using fac-Ir(ppy), achieving predictable, linear increases in molecular weight with conversion. Kinetics studies showed that adding a tertiary amine (triethanolamine) introduced a reversible redox reaction to stabilize the TTC radical during chain extensions, leading to more uniform block copolymers (Ð < 1.47) compared to block copolymers synthesized without amine (Ð < 1.56). To highlight the utility of this method, triblock copolymers of poly(methyl acrylate) and poly(methyl methacrylate) blocks were investigated. The order of acrylic and methacrylic blocks impacted the physical properties of compositionally similar polymeric materials. For example, a high molecular weight triblock copolymer (P(MMA-b-MA-b-MMA), M = 564 kg mol) thermoplastic elastomer showed exceptional strain (>1600%). Overall, we report (i) a new methodology to unlock synthetic access to acrylic-methacrylic block copolymers using TTCs and photocatalysis, (ii) insight into photocatalyst-mediated radical polymerization, and (iii) synthesis of new high-performance materials.
由于合成方面的限制,许多丙烯酸-甲基丙烯酸嵌段共聚物序列仍然难以获得。在此,利用光致电子/能量转移(PET)催化来克服三硫代碳酸酯(TTC)介导的可逆加成-断裂链转移(RAFT)聚合中的封端顺序限制。我们使用fac-Ir(ppy)通过PET-RAFT合成了聚(丙烯酸甲酯-b-甲基丙烯酸甲酯),实现了分子量随转化率呈可预测的线性增加。动力学研究表明,添加叔胺(三乙醇胺)会引入一个可逆的氧化还原反应,以在链增长过程中稳定TTC自由基,从而得到比不添加胺合成的嵌段共聚物(Ð<1.56)更均匀的嵌段共聚物(Ð<1.47)。为了突出该方法的实用性,对聚(丙烯酸甲酯)和聚(甲基丙烯酸甲酯)嵌段的三嵌段共聚物进行了研究。丙烯酸和甲基丙烯酸嵌段的顺序影响了组成相似的聚合物材料的物理性能。例如,一种高分子量三嵌段共聚物(P(MMA-b-MA-b-MMA),M = 564 kg mol)热塑性弹性体表现出优异的应变(>1600%)。总体而言,我们报道了(i)一种利用TTCs和光催化解锁丙烯酸-甲基丙烯酸嵌段共聚物合成途径的新方法,(ii)对光催化剂介导的自由基聚合的深入了解,以及(iii)新型高性能材料的合成。