Hristovska Ana-Marija, Duch Patricia, Allingstrup Mikkel, Afshari Arash
Juliane Marie Centre - Anaesthesia and Surgical Clinic Department 4013, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen, Denmark, 2100.
Cochrane Database Syst Rev. 2017 Aug 14;8(8):CD012763. doi: 10.1002/14651858.CD012763.
Acetylcholinesterase inhibitors, such as neostigmine, have traditionally been used for reversal of non-depolarizing neuromuscular blocking agents. However, these drugs have significant limitations, such as indirect mechanisms of reversal, limited and unpredictable efficacy, and undesirable autonomic responses. Sugammadex is a selective relaxant-binding agent specifically developed for rapid reversal of non-depolarizing neuromuscular blockade induced by rocuronium. Its potential clinical benefits include fast and predictable reversal of any degree of block, increased patient safety, reduced incidence of residual block on recovery, and more efficient use of healthcare resources.
The main objective of this review was to compare the efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade caused by non-depolarizing neuromuscular agents in adults.
We searched the following databases on 2 May 2016: Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE (WebSPIRS Ovid SP), Embase (WebSPIRS Ovid SP), and the clinical trials registries www.controlled-trials.com, clinicaltrials.gov, and www.centerwatch.com. We re-ran the search on 10 May 2017.
We included randomized controlled trials (RCTs) irrespective of publication status, date of publication, blinding status, outcomes published, or language. We included adults, classified as American Society of Anesthesiologists (ASA) I to IV, who received non-depolarizing neuromuscular blocking agents for an elective in-patient or day-case surgical procedure. We included all trials comparing sugammadex versus neostigmine that reported recovery times or adverse events. We included any dose of sugammadex and neostigmine and any time point of study drug administration.
Two review authors independently screened titles and abstracts to identify trials for eligibility, examined articles for eligibility, abstracted data, assessed the articles, and excluded obviously irrelevant reports. We resolved disagreements by discussion between review authors and further disagreements through consultation with the last review author. We assessed risk of bias in 10 methodological domains using the Cochrane risk of bias tool and examined risk of random error through trial sequential analysis. We used the principles of the GRADE approach to prepare an overall assessment of the quality of evidence. For our primary outcomes (recovery times to train-of-four ratio (TOFR) > 0.9), we presented data as mean differences (MDs) with 95 % confidence intervals (CIs), and for our secondary outcomes (risk of adverse events and risk of serious adverse events), we calculated risk ratios (RRs) with CIs.
We included 41 studies (4206 participants) in this updated review, 38 of which were new studies. Twelve trials were eligible for meta-analysis of primary outcomes (n = 949), 28 trials were eligible for meta-analysis of secondary outcomes (n = 2298), and 10 trials (n = 1647) were ineligible for meta-analysis.We compared sugammadex 2 mg/kg and neostigmine 0.05 mg/kg for reversal of rocuronium-induced moderate neuromuscular blockade (NMB). Sugammadex 2 mg/kg was 10.22 minutes (6.6 times) faster then neostigmine 0.05 mg/kg (1.96 vs 12.87 minutes) in reversing NMB from the second twitch (T2) to TOFR > 0.9 (MD 10.22 minutes, 95% CI 8.48 to 11.96; I = 84%; 10 studies, n = 835; GRADE: moderate quality).We compared sugammadex 4 mg/kg and neostigmine 0.07 mg/kg for reversal of rocuronium-induced deep NMB. Sugammadex 4 mg/kg was 45.78 minutes (16.8 times) faster then neostigmine 0.07 mg/kg (2.9 vs 48.8 minutes) in reversing NMB from post-tetanic count (PTC) 1 to 5 to TOFR > 0.9 (MD 45.78 minutes, 95% CI 39.41 to 52.15; I = 0%; two studies, n = 114; GRADE: low quality).For our secondary outcomes, we compared sugammadex, any dose, and neostigmine, any dose, looking at risk of adverse and serious adverse events. We found significantly fewer composite adverse events in the sugammadex group compared with the neostigmine group (RR 0.60, 95% CI 0.49 to 0.74; I = 40%; 28 studies, n = 2298; GRADE: moderate quality). Risk of adverse events was 28% in the neostigmine group and 16% in the sugammadex group, resulting in a number needed to treat for an additional beneficial outcome (NNTB) of 8. When looking at specific adverse events, we noted significantly less risk of bradycardia (RR 0.16, 95% CI 0.07 to 0.34; I= 0%; 11 studies, n = 1218; NNTB 14; GRADE: moderate quality), postoperative nausea and vomiting (PONV) (RR 0.52, 95% CI 0.28 to 0.97; I = 0%; six studies, n = 389; NNTB 16; GRADE: low quality) and overall signs of postoperative residual paralysis (RR 0.40, 95% CI 0.28 to 0.57; I = 0%; 15 studies, n = 1474; NNTB 13; GRADE: moderate quality) in the sugammadex group when compared with the neostigmine group. Finally, we found no significant differences between sugammadex and neostigmine regarding risk of serious adverse events (RR 0.54, 95% CI 0.13 to 2.25; I= 0%; 10 studies, n = 959; GRADE: low quality).Application of trial sequential analysis (TSA) indicates superiority of sugammadex for outcomes such as recovery time from T2 to TOFR > 0.9, adverse events, and overall signs of postoperative residual paralysis.
AUTHORS' CONCLUSIONS: Review results suggest that in comparison with neostigmine, sugammadex can more rapidly reverse rocuronium-induced neuromuscular block regardless of the depth of the block. Sugammadex 2 mg/kg is 10.22 minutes (˜ 6.6 times) faster in reversing moderate neuromuscular blockade (T2) than neostigmine 0.05 mg/kg (GRADE: moderate quality), and sugammadex 4 mg/kg is 45.78 minutes (˜ 16.8 times) faster in reversing deep neuromuscular blockade (PTC 1 to 5) than neostigmine 0.07 mg/kg (GRADE: low quality). With an NNTB of 8 to avoid an adverse event, sugammadex appears to have a better safety profile than neostigmine. Patients receiving sugammadex had 40% fewer adverse events compared with those given neostigmine. Specifically, risks of bradycardia (RR 0.16, NNTB 14; GRADE: moderate quality), PONV (RR 0.52, NNTB 16; GRADE: low quality), and overall signs of postoperative residual paralysis (RR 0.40, NNTB 13; GRADE: moderate quality) were reduced. Both sugammadex and neostigmine were associated with serious adverse events in less than 1% of patients, and data showed no differences in risk of serious adverse events between groups (RR 0.54; GRADE: low quality).
传统上,新斯的明等乙酰胆碱酯酶抑制剂一直用于逆转非去极化神经肌肉阻滞剂的作用。然而,这些药物存在显著局限性,如逆转机制间接、疗效有限且不可预测,以及出现不良自主反应。舒更葡糖是一种选择性肌松药结合剂,专门用于快速逆转罗库溴铵诱导的非去极化神经肌肉阻滞。其潜在的临床益处包括能快速且可预测地逆转任何程度的阻滞、提高患者安全性、降低恢复时残余阻滞的发生率,以及更有效地利用医疗资源。
本综述的主要目的是比较舒更葡糖与新斯的明在逆转成人非去极化神经肌肉阻滞剂所致神经肌肉阻滞方面的疗效和安全性。
我们于2016年5月2日检索了以下数据库:Cochrane对照试验中心注册库(CENTRAL);医学期刊数据库(MEDLINE,通过WebSPIRS Ovid SP检索)、荷兰医学文摘数据库(Embase,通过WebSPIRS Ovid SP检索),以及临床试验注册库www.controlled-trials.com、clinicaltrials.gov和www.centerwatch.com。我们于2017年5月10日再次进行了检索。
我们纳入了随机对照试验(RCT),无论其发表状态、发表日期、盲法状态、已发表的结局或语言如何。我们纳入了美国麻醉医师协会(ASA)分级为I至IV级的成年人,这些成年人接受非去极化神经肌肉阻滞剂进行择期住院或日间手术。我们纳入了所有比较舒更葡糖与新斯的明并报告恢复时间或不良事件的试验。我们纳入了任何剂量的舒更葡糖和新斯的明以及研究药物给药的任何时间点。
两位综述作者独立筛选标题和摘要以确定符合纳入标准的试验,检查文章是否符合纳入标准,提取数据并评估文章,排除明显不相关的报告。我们通过综述作者之间的讨论解决分歧,对于进一步的分歧则通过与最后一位综述作者协商解决。我们使用Cochrane偏倚风险工具在10个方法学领域评估偏倚风险,并通过试验序贯分析检查随机误差风险。我们使用GRADE方法的原则对证据质量进行总体评估。对于我们的主要结局(四个成串刺激比值(TOFR)>0.9的恢复时间),我们以均值差(MD)及95%置信区间(CI)呈现数据,对于次要结局(不良事件风险和严重不良事件风险),我们计算风险比(RR)及CI。
我们在本次更新的综述中纳入了41项研究(4206名参与者),其中38项为新研究。12项试验符合主要结局的荟萃分析标准(n = 949),28项试验符合次要结局的荟萃分析标准(n = 2298),10项试验(n = 1647)不符合荟萃分析标准。我们比较了舒更葡糖2 mg/kg与新斯的明0.05 mg/kg用于逆转罗库溴铵诱导的中度神经肌肉阻滞(NMB)。舒更葡糖2 mg/kg在将NMB从第二个肌颤搐(T2)逆转至TOFR>0.9时比新斯的明0.05 mg/kg快10.22分钟(6.6倍)(1.96分钟对12.87分钟)(MD 10.22分钟,95%CI 8.48至11.96;I² = 84%;10项研究,n = 835;GRADE:中等质量)。我们比较了舒更葡糖4 mg/kg与新斯的明0.07 mg/kg用于逆转罗库溴铵诱导的深度NMB。舒更葡糖4 mg/kg在将NMB从强直后计数(PTC)1至5逆转至TOFR>0.9时比新斯的明0.07 mg/kg快45.78分钟(16.8倍)(2.9分钟对48.8分钟)(MD 45.78分钟,95%CI 39.41至52.15;I² = 0%;2项研究,n = 114;GRADE:低质量)。对于次要结局,我们比较了任何剂量的舒更葡糖和任何剂量的新斯的明,观察不良和严重不良事件风险。我们发现舒更葡糖组的复合不良事件明显少于新斯的明组(RR 0.60,95%CI 0.49至0.74;I² = 40%;28项研究,n = 2298;GRADE:中等质量)。新斯的明组不良事件风险为28%,舒更葡糖组为16%,得出为获得额外有益结局所需治疗人数(NNTB)为8。在观察特定不良事件时,我们注意到与新斯的明组相比,舒更葡糖组心动过缓风险(RR 0.16,95%CI 0.07至0.34;I² = 0%;11项研究,n = 1218;NNTB 14;GRADE:中等质量)、术后恶心呕吐(PONV)(RR 0.52,95%CI 0.28至0.97;I² = 0%;6项研究,n = 389;NNTB 16;GRADE:低质量)以及术后残余麻痹总体体征(RR 0.40,95%CI 0.28至0.57;I² = 0%;15项研究,n = 1474;NNTB 13;GRADE:中等质量)明显更低。最后,我们发现舒更葡糖与新斯的明在严重不良事件风险方面无显著差异(RR 0.54,95%CI 0.13至2.25;I² = 0%;10项研究,n = 959;GRADE:低质量)。试验序贯分析(TSA)的应用表明,舒更葡糖在从T2至TOFR>0.9的恢复时间、不良事件以及术后残余麻痹总体体征等结局方面具有优越性。
综述结果表明,与新斯的明相比,无论阻滞深度如何,舒更葡糖都能更快速地逆转罗库溴铵诱导的神经肌肉阻滞。舒更葡糖2 mg/kg在逆转中度神经肌肉阻滞(T2)时比新斯的明0.05 mg/kg快10.22分钟(约6.6倍)(GRADE:中等质量),舒更葡糖4 mg/kg在逆转深度神经肌肉阻滞(PTC 1至5)时比新斯的明0.07 mg/kg快45.78分钟(约16.8倍)(GRADE:低质量)。NNTB为8以避免不良事件,舒更葡糖似乎比新斯的明具有更好的安全性。接受舒更葡糖的患者不良事件比接受新斯的明的患者少40%。具体而言,心动过缓风险(RR 0.16,NNTB 14;GRADE:中等质量)、PONV(RR 0.52,NNTB 16;GRADE:低质量)以及术后残余麻痹总体体征(RR 0.40,NNTB 13;GRADE:中等质量)均降低。舒更葡糖和新斯的明在不到1%的患者中与严重不良事件相关,数据显示两组之间严重不良事件风险无差异(RR 0.54;GRADE:低质量)。