Suppr超能文献

用于识别基因相互作用的机器学习方法

Machine Learning Approaches for the Identification of Genetic Interactions.

作者信息

Dey Anubha, Kiran Manjari

机构信息

Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.

出版信息

Methods Mol Biol. 2025;2952:259-272. doi: 10.1007/978-1-0716-4690-8_15.

Abstract

Genetic interactions are crucial in understanding the crosstalk between the gene pairs and help decipher their functional roles. They are defined as phenotypic outcomes resulting from two or more gene interactions. A gene proves to be an exceptional drug target of which the partner gene is mutated or overexpressed. Genetic interaction in cancer has been widely used for targeted therapy, of which synthetic lethality (SL) is the most studied. SL is a negative interaction in which inhibiting either of the genes does not affect the cell viability, but inhibiting both genes makes the cancer cell lethal. Various experimental and computational methods have been developed to identify and predict these interactions. This book chapter reviews different machine learning methods to predict SL interaction and how it mediates drug sensitivity. The chapter takes the reader through the salient features of different classical machine learning algorithms and their limitation. It also provides comprehensive knowledge about the features utilized for the model training and their importance. By the end of this book chapter, the readers will have an overview of different methods to identify genetic interaction and their associated advantages and limitations.

摘要

基因相互作用对于理解基因对之间的相互作用及帮助解读它们的功能作用至关重要。基因相互作用被定义为由两个或更多基因相互作用产生的表型结果。当一个基因的伙伴基因发生突变或过表达时,该基因就成为一个特殊的药物靶点。癌症中的基因相互作用已被广泛用于靶向治疗,其中合成致死(SL)是研究最多的。合成致死是一种负向相互作用,即抑制其中任何一个基因都不会影响细胞活力,但同时抑制两个基因会使癌细胞致死。已经开发了各种实验和计算方法来识别和预测这些相互作用。本章综述了用于预测合成致死相互作用及其如何介导药物敏感性的不同机器学习方法。本章带领读者了解不同经典机器学习算法的显著特征及其局限性。它还提供了有关用于模型训练的特征及其重要性的全面知识。在本章结束时,读者将对识别基因相互作用的不同方法及其相关的优点和局限性有一个概述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验