文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种利用双耳时间差进行声源分离的哺乳动物下丘模型。

A mammalian inferior colliculus model for sound source separation using interaural time differences.

作者信息

Leibold Christian, Groß Sebastian

机构信息

Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.

BrainLinks-BrainTools Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.

出版信息

PLoS Comput Biol. 2025 Jun 24;21(6):e1013243. doi: 10.1371/journal.pcbi.1013243. eCollection 2025 Jun.


DOI:10.1371/journal.pcbi.1013243
PMID:40554588
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12212879/
Abstract

The inferior colliculus (IC) is a central hub in the ascending auditory brainstem. It hosts many neurons tuned to interaural time differences (ITDs). ITD tuning, however, is already observed and generated one synapse upstream in the superior olivary complex and the physiological mechanisms as well as the functional purpose of the IC projection remain partially unresolved. Here, we argue that combining ITD sensitive inputs from medial superior olive (MSO) and lateral superior olive (LSO) requires a temporally well adjusted delay of cross-hemispheric fibers from LSO to IC, given the fast synaptic kinetics of IC neurons. We present a normative model of the midbrain auditory circuitry that finds an optimal cross-hemispheric delay of 0.3 cycles and optimal synaptic strengths by maximizing the firing rate of IC neurons for a stimulus at a given ITD. The model suggests that, by varying the relative synaptic weight of MSO and LSO input, individual neurons are optimized to transmit information of all sound sources in a complex auditory scene. ITD tuning of IC neurons would then results as a side effect. The model focuses on the low-frequency range, is consistent with the distribution of best ITDs observed in experimental recordings and performs close to optimal in sound source reconstruction.

摘要

下丘(IC)是听觉脑干上行通路的一个中枢枢纽。它包含许多对双耳时间差(ITD)进行调谐的神经元。然而,在橄榄上核中,在比下丘上游一个突触的位置就已经观察到并产生了ITD调谐,而下丘投射的生理机制和功能目的仍部分未得到解决。在这里,我们认为,鉴于下丘神经元快速的突触动力学特性,要整合来自内侧上橄榄核(MSO)和外侧上橄榄核(LSO)的ITD敏感输入,需要从LSO到IC的跨半球纤维在时间上进行良好调整的延迟。我们提出了一个中脑听觉回路的规范模型,该模型通过在给定ITD下使下丘神经元的放电率最大化,找到了0.3个周期的最佳跨半球延迟和最佳突触强度。该模型表明,通过改变MSO和LSO输入的相对突触权重,单个神经元被优化以在复杂听觉场景中传输所有声源的信息。下丘神经元的ITD调谐将作为一种副作用产生。该模型聚焦于低频范围,与实验记录中观察到的最佳ITD分布一致,并且在声源重建方面表现接近最优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/4bb7d16bfe1a/pcbi.1013243.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/ac684975fbec/pcbi.1013243.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/449b99b2dbe4/pcbi.1013243.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/a1281e10c518/pcbi.1013243.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/74ab4080d767/pcbi.1013243.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/853057e51e39/pcbi.1013243.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/6bf2b49a0a43/pcbi.1013243.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/e84d5d4a7b06/pcbi.1013243.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/9ccbcf673c4c/pcbi.1013243.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/3ca97a9db940/pcbi.1013243.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/7da24ed0c6e9/pcbi.1013243.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/788f2decbe05/pcbi.1013243.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/4bb7d16bfe1a/pcbi.1013243.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/ac684975fbec/pcbi.1013243.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/449b99b2dbe4/pcbi.1013243.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/a1281e10c518/pcbi.1013243.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/74ab4080d767/pcbi.1013243.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/853057e51e39/pcbi.1013243.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/6bf2b49a0a43/pcbi.1013243.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/e84d5d4a7b06/pcbi.1013243.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/9ccbcf673c4c/pcbi.1013243.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/3ca97a9db940/pcbi.1013243.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/7da24ed0c6e9/pcbi.1013243.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/788f2decbe05/pcbi.1013243.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98cd/12212879/4bb7d16bfe1a/pcbi.1013243.g012.jpg

相似文献

[1]
A mammalian inferior colliculus model for sound source separation using interaural time differences.

PLoS Comput Biol. 2025-6-24

[2]
A computational model of auditory chirp-velocity sensitivity and amplitude-modulation tuning in inferior colliculus neurons.

J Comput Neurosci. 2024-11

[3]
Transformations in processing interaural time differences between the superior olivary complex and inferior colliculus: beyond the Jeffress model.

Hear Res. 2002-6

[4]
Axon initial segment plasticity caused by auditory deprivation degrades time difference sensitivity in a model of neural responses to cochlear implants.

J Comput Neurosci. 2025-4-17

[5]
Dual sensitivity of inferior colliculus neurons to ITD in the envelopes of high-frequency sounds: experimental and modeling study.

J Neurophysiol. 2013-10-23

[6]
Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.

J Neurophysiol. 1996-10

[7]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[8]
Precise spike-timing information in the brainstem is well aligned with the needs of communication and the perception of environmental sounds.

PLoS Biol. 2025-6-16

[9]
Intrauterine administration of human chorionic gonadotropin (hCG) for subfertile women undergoing assisted reproduction.

Cochrane Database Syst Rev. 2016-5-20

[10]
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.

Health Technol Assess. 2024-10

本文引用的文献

[1]
Bilateral and symmetric glycinergic and glutamatergic projections from the LSO to the IC in the CBA/CaH mouse.

Front Neural Circuits. 2024

[2]
Ambient sound stimulation tunes axonal conduction velocity by regulating radial growth of myelin on an individual, axon-by-axon basis.

Proc Natl Acad Sci U S A. 2024-3-12

[3]
Effect of a processing delay between direct and delayed sound in simulated open fit hearing aids on speech intelligibility in noise.

Front Neurosci. 2024-1-4

[4]
A hemispheric two-channel code accounts for binaural unmasking in humans.

Commun Biol. 2022-10-22

[5]
Adaptation in auditory processing.

Physiol Rev. 2023-4-1

[6]
Glycinergic axonal inhibition subserves acute spatial sensitivity to sudden increases in sound intensity.

Elife. 2021-6-14

[7]
Arrangement of Excitatory Synaptic Inputs on Dendrites of the Medial Superior Olive.

J Neurosci. 2021-1-13

[8]
Neural Mechanisms of Binaural Processing in the Auditory Brainstem.

Compr Physiol. 2019-9-19

[9]
A novel concept for dynamic adjustment of auditory space.

Sci Rep. 2018-5-29

[10]
Precisely timed inhibition facilitates action potential firing for spatial coding in the auditory brainstem.

Nat Commun. 2018-5-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索