Suppr超能文献

一种用于动态调整听觉空间的新方法。

A novel concept for dynamic adjustment of auditory space.

机构信息

Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Muenchen, Großhaderner Str. 2-4, D-82152, Martinsried, Planegg, Germany.

Bernstein Center for Computational Neuroscience Munich, Großhaderner Straße 2-4, D-82152, Martinsried, Germany.

出版信息

Sci Rep. 2018 May 29;8(1):8335. doi: 10.1038/s41598-018-26690-0.

Abstract

Traditionally, the auditory system is thought to serve reliable sound localization. Stimulus-history driven feedback circuits in the early binaural pathway, however, contradict this canonical concept and raise questions about their functional significance. Here we show that stimulus-history dependent changes in absolute space perception are poorly captured by the traditional labeled-line and hemispheric-difference models of auditory space coding. We therefore developed a new decoding model incorporating recent electrophysiological findings in which sound location is initially computed in both brain hemispheres independently and combined to yield a hemispherically balanced code. This model closely captures the observed absolute localization errors caused by stimulus history, and furthermore predicts a selective dilation and compression of perceptional space. These model predictions are confirmed by improvement and degradation of spatial resolution in human listeners. Thus, dynamic perception of auditory space facilitates focal sound source segregation at the expense of absolute sound localization, questioning existing concepts of spatial hearing.

摘要

传统上,听觉系统被认为可以提供可靠的声音定位。然而,早期双耳通路中受刺激历史驱动的反馈回路却与这一经典概念相矛盾,引发了对其功能意义的质疑。在这里,我们表明,受刺激历史影响的绝对空间感知变化,很难被传统的听觉空间编码的有标记线和半球差模型所捕捉。因此,我们开发了一个新的解码模型,该模型结合了最近的电生理学发现,其中声音位置最初在两个大脑半球中独立计算,然后结合起来产生半球平衡的编码。该模型很好地捕捉到了由刺激历史引起的观察到的绝对定位误差,并且进一步预测了感知空间的选择性扩展和压缩。这些模型预测得到了人类听众的空间分辨率提高和降低的证实。因此,听觉空间的动态感知有利于焦点声源的分离,而牺牲了绝对声音定位,这对现有的空间听觉概念提出了质疑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9f1/5974081/6c1edbd6e955/41598_2018_26690_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验