Supriya Laha, Shukla Pooja, Dake Deepika, Gudipalli Padmaja, Muthamilarasan Mehanathan
The Millet Lab, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
The Millet Lab, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
J Plant Physiol. 2025 Aug;311:154549. doi: 10.1016/j.jplph.2025.154549. Epub 2025 Jun 16.
Drought impairs plant growth and productivity by disrupting key physiological and biochemical processes. Foxtail millet (Setaria italica), a drought-resilient C crop, is well-suited for climate-smart agriculture, yet its stress adaptation mechanisms remain underexplored. This study deciphered dehydration responses in tolerant and sensitive genotypes, focusing on redox regulation, sugar metabolism, energy dynamics, and autophagy. For this, four drought-distinguished millet genotypes (2 tolerant and 2 sensitive) were subjected to dehydration stress (20 % PEG-6000) for different time points (0, 2, 6 and 12 h). Tolerant genotypes exhibited improved antioxidant enzyme activity and GSH:GSSG ratios, resulting in efficient detoxification of reactive oxygen species (ROS) and improved membrane stability. Sensitive genotypes, in contrast, accumulated ROS and showed elevated oxidative damage and electrolyte leakage. Tolerant genotypes also maintained higher trans-zeatin levels and suppressed chlorophyll degradation, thereby preserving photosynthesis and delaying senescence. Sugar metabolism was more efficient in tolerant types, with increased activities of sugar metabolism enzymes, enabling proper carbohydrate partitioning and osmotic adjustment. Contrastingly, sensitive genotypes showed sugar overaccumulation due to impaired mobilization. Also, tolerant genotypes retained higher ATP and pyruvate levels, indicating better energy homeostasis. Additionally, enhanced autophagy, marked by elevated ATG8 protein and ATG transcript levels, supported cellular recycling in tolerant genotypes. In contrast, repressed autophagy was observed despite increased abscisic acid in sensitive genotypes, likely due to sugar-mediated signalling and elevated trehalose-6-phosphate levels. These integrated responses highlight the roles of redox control, metabolic coordination, and autophagy in dehydration tolerance and offer multi-target strategies for breeding climate-resilient Setaria cultivars for drought-prone environments.
干旱通过扰乱关键的生理和生化过程,损害植物生长和生产力。谷子(Setaria italica)作为一种耐旱的C4作物,非常适合气候智能型农业,但其胁迫适应机制仍有待深入探索。本研究解析了耐性和敏感基因型的脱水反应,重点关注氧化还原调节、糖代谢、能量动态和自噬。为此,对四种在干旱条件下表现不同的谷子基因型(2种耐性和2种敏感型)在不同时间点(0、2、6和12小时)施加脱水胁迫(20% PEG - 6000)。耐性基因型表现出抗氧化酶活性和谷胱甘肽(GSH)与氧化型谷胱甘肽(GSSG)比值提高,从而有效清除活性氧(ROS)并提高膜稳定性。相比之下,敏感基因型积累ROS,表现出更高的氧化损伤和电解质渗漏。耐性基因型还保持较高的反式玉米素水平并抑制叶绿素降解,从而维持光合作用并延缓衰老。耐性类型的糖代谢更高效,糖代谢酶活性增加,能够实现碳水化合物的合理分配和渗透调节。相反,敏感基因型由于转运受损而出现糖过度积累。此外,耐性基因型保持较高的ATP和丙酮酸水平,表明能量稳态更好。此外,以ATG8蛋白和ATG转录水平升高为标志的自噬增强,支持了耐性基因型中的细胞循环利用。相比之下,尽管敏感基因型中脱落酸增加,但仍观察到自噬受到抑制,这可能是由于糖介导的信号传导和海藻糖 - 6 - 磷酸水平升高所致。这些综合反应突出了氧化还原控制、代谢协调和自噬在脱水耐受性中的作用,并为在易旱环境中培育耐气候的谷子品种提供了多靶点策略。