Jia Jingru, Lu Yinjun, Li Yanpeng, Li Yuning, Li Lingli, Zhang Haoqiang
College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
Physiol Plant. 2025 Jul-Aug;177(4):e70346. doi: 10.1111/ppl.70346.
Acer truncatum Bunge, an economically significant species, is often growth-limited by phosphorus availability. Phosphate transporters, especially the PHT1 family, are crucial for plant phosphorus absorption, transport, and redistribution. This study aimed to elucidate the role of Acer truncatum PHT1 genes in phosphorus transport. We cloned five PHT1 family genes (AtPT1, AtPT2, AtPT4, AtPT9, and AtPT11) and investigated their expression and function under varying phosphorus regimes in the context of arbuscular mycorrhizal (AM) symbiosis with Rhizophagus irregularis. Real-time quantitative PCR revealed differential gene expression patterns in response to AM colonization and phosphorus levels. Functional characterization through yeast complementation, tobacco overexpression, subcellular localization, and GUS reporter gene assays confirmed the plasma membrane localization and typical PHT1 family traits of these transporters. AM colonization upregulated AtPT4 and AtPT11, with AtPT11 having a specific induction pattern for mycorrhizal phosphorus acquisition. AtPT4 was linked to phosphorus uptake via mycorrhizal symbiosis, AtPT1 is involved in phosphorus remobilization within plant tissues, AtPT2 in phosphorus transport and remobilization (suppressed by AM colonization), and AtPT9 in phosphorus uptake and transport efficiency under high-phosphorus conditions. These findings provide insights into the molecular mechanisms underlying phosphorus homeostasis in Acer truncatum and its mycorrhizal interactions.
元宝枫是一种具有重要经济价值的物种,其生长常受磷有效性的限制。磷转运蛋白,尤其是PHT1家族,对植物磷的吸收、运输和再分配至关重要。本研究旨在阐明元宝枫PHT1基因在磷转运中的作用。我们克隆了五个PHT1家族基因(AtPT1、AtPT2、AtPT4、AtPT9和AtPT11),并在与不规则球囊霉形成丛枝菌根(AM)共生的背景下,研究了它们在不同磷条件下的表达和功能。实时定量PCR揭示了响应AM定殖和磷水平的差异基因表达模式。通过酵母互补、烟草过表达、亚细胞定位和GUS报告基因分析进行的功能表征证实了这些转运蛋白的质膜定位和典型的PHT1家族特征。AM定殖上调了AtPT4和AtPT11,其中AtPT11对菌根磷获取具有特定的诱导模式。AtPT4与通过菌根共生吸收磷有关,AtPT1参与植物组织内的磷再转运,AtPT2参与磷的运输和再转运(被AM定殖抑制),AtPT9在高磷条件下参与磷的吸收和运输效率。这些发现为元宝枫磷稳态及其菌根相互作用的分子机制提供了见解。