Huang Zi-Hang, Liu Miao, Zhang Yue, Li Hui, Liu Jichi, Wu Zhijun, Du Wubin, Pan Hongge, Ma Tianyi
Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China.
Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
Adv Mater. 2025 Sep;37(38):e2508001. doi: 10.1002/adma.202508001. Epub 2025 Jun 25.
In aqueous ammonium-ion storage (AAIS), effective hydrogen-binding sites are crucial for designing high-performance ammonium ions (NH ) host materials. The organic small molecule tetraamino-p-benzoquinone (TABQ) shows great potential in AAIS due to its unique hydrogen-bonding interactions with NH . However, such small-molecule materials typically exhibit severe dissolution in aqueous electrolytes. Moreover, their low conductivity severely hampers their ability to store ammonium ions. To address these challenges concurrently, a chain amide polymer (PPAT) is designed by introducing a 3,4,9,10-perylenetetracarboxylic dianhydride to extend the skeleton of TABQ. This polymer exhibits an ultralow solubility of 0.00058 mg mL and introduces substantial functional groups for hydrogen-bonding interactions. The conjugated effect is further extended by combining it with polyaniline (PANI). The spectral and computational results indicate that the designed material possesses an elevated HOMO energy level, a reduced LUMO energy level, and a smaller bandgap. The delocalization of electrons throughout the entire molecule leads to a semiconducting nature. The organic polymer electrode delivers a high capacity of 291.81 mAh g at 1 A g, outperforming state-of-the-art NH storage organic materials. The energy storage mechanism of the hydrogen-bonding interactions between the organic polymer and NH is investigated, and the active sites that contribute to high capacity are identified.
在水性铵离子存储(AAIS)中,有效的氢键结合位点对于设计高性能铵离子(NH)主体材料至关重要。有机小分子四氨基对苯醌(TABQ)由于其与NH独特的氢键相互作用,在AAIS中显示出巨大潜力。然而,这类小分子材料通常在水性电解质中表现出严重的溶解性。此外,它们的低电导率严重阻碍了其存储铵离子的能力。为了同时应对这些挑战,通过引入3,4,9,10-苝四羧酸二酐来扩展TABQ的骨架,设计了一种链状酰胺聚合物(PPAT)。这种聚合物表现出0.00058 mg mL的超低溶解度,并引入了大量用于氢键相互作用的官能团。通过将其与聚苯胺(PANI)结合,共轭效应进一步扩展。光谱和计算结果表明,所设计的材料具有升高的最高占据分子轨道(HOMO)能级、降低的最低未占据分子轨道(LUMO)能级和更小的带隙。电子在整个分子中的离域导致了半导体性质。该有机聚合物电极在1 A g下具有291.81 mAh g的高容量,优于目前最先进的NH存储有机材料。研究了有机聚合物与NH之间氢键相互作用的储能机制,并确定了有助于实现高容量的活性位点。