Suppr超能文献

用于超稳定铵离子存储的氮诱导氢键超分子网络

Nitrogen-Induced Hydrogen Bonding Supramolecular Network for Ultra-Stable Ammonium Ion Storage.

作者信息

Yang Shaopei, Zhao Wenkai, Mi Yongqi, Li Baiting, Dong Yuman, Xie Kefeng, Zhao Wengao, Long Guankui, Du Pengcheng

机构信息

State Key Laboratory of Natural Product Chemistry, Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.

出版信息

Angew Chem Int Ed Engl. 2025 Sep 2:e202511826. doi: 10.1002/anie.202511826.

Abstract

Aqueous ammonium ion batteries (AAIBs) are emerging as sustainable energy storage systems due to their inherent safety and eco-friendliness. Organic electrode materials demonstrate significant potential as anode materials due to their structural diversity, eco-friendly, and abundant redox-active moieties. However, their practical application is hindered by low specific capacity and poor cycling stability. In this study, we introduced 2,8,14-trinitrodiquinoxalino[2,3-a:2',3'-c]phenazine (HATNTN), a nitro-functionalized π-conjugated aromatic structure, as a host material for enhancing NH storage. The synergistic integration of nitro groups and aromatic frameworks enables dual enhancements: robust NH coordination via a two-step redox mechanism and enhanced dissolution resistance via hydrogen-bonding supramolecular network. HATNTN anode demonstrates a remarkable capacity of 203.4 mAh g at 1 A g and an exceptional cycle life of 30,000 cycles at 20 A g. Moreover, HATNTN//VO300 full battery delivers a stable specific capacity of 106.2 mAh g over 30,000 cycles at 3 A g, with a cycle life exceeding 2500 h and a capacity retention rate of 88.1%. Combining in situ spectroscopy and density functional theory calculations, we elucidate the critical role of nitro-induced hydrogen bonding in stabilizing NH storage interfaces. This study establishes a supramolecular design paradigm for durable organic anodes, advancing high-performance AAIBs toward practical applications.

摘要

水系铵离子电池(AAIBs)因其固有的安全性和环境友好性,正成为可持续的储能系统。有机电极材料由于其结构多样性、环境友好性以及丰富的氧化还原活性基团,作为负极材料展现出巨大潜力。然而,其实际应用受到低比容量和较差循环稳定性的阻碍。在本研究中,我们引入了2,8,14-三硝基二喹喔啉并[2,3-a:2',3'-c]吩嗪(HATNTN),一种硝基功能化的π共轭芳香结构,作为增强NH₃存储的主体材料。硝基基团与芳香骨架的协同整合实现了双重增强:通过两步氧化还原机制实现强大的NH₃配位,以及通过氢键超分子网络增强抗溶解性。HATNTN负极在1 A g下展现出203.4 mAh g的显著容量,在20 A g下具有30000次循环的超长循环寿命。此外,HATNTN//VO₃全电池在3 A g下30000次循环中提供106.2 mAh g的稳定比容量,循环寿命超过2500 h,容量保持率为88.1%。结合原位光谱和密度泛函理论计算,我们阐明了硝基诱导的氢键在稳定NH₃存储界面中的关键作用。本研究建立了一种用于耐用有机负极的超分子设计范式,推动高性能AAIBs走向实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验