Nakamura Masashi, Wu Dongshuang, Mukoyoshi Megumi, Kusada Kohei, Hayashi Hiroyuki, Toriyama Takaaki, Yamamoto Tomokazu, Murakami Yasukazu, Ashitani Hirotaka, Kawaguchi Shogo, Ina Toshiaki, Sakata Osami, Kubota Yoshiki, Tanaka Isao, Kitagawa Hiroshi
Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
The HAKUBI Center for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
ACS Nanosci Au. 2025 Apr 30;5(3):196-207. doi: 10.1021/acsnanoscienceau.5c00013. eCollection 2025 Jun 18.
We demonstrate physically consistent and interpretable extended X-ray absorption fine structure (EXAFS) curve-fitting analyses for estimating element-selective local structures in multielement alloy nanoparticles (MEA NPs). The difficulty in analyzing multielement systems originates from the too large number of independent structural parameters to fit, far exceeding the information content of the typical experimental data. Herein, this challenge is overcome by simultaneously fitting multiple data at different absorption edges and temperatures while imposing constraints based on a physically reasonable model. Another advantage of our approach is interpretability; the individual contributions of the constituent elements to the static and dynamic structures are explicitly estimated as atomic radii and Einstein temperatures. This method is used to analyze MEA NPs composed of platinum-group metals and -block metals, which have contrasting properties, including atomic radii, melting points, and electronegativities. The results indicate that the local structures reflect the intrinsic nature of the elements and are also influenced by the interactions among them. The local structures around the -block metals in the MEA NPs are shown to be distinctively modulated compared with those in the corresponding monometals, which is attributed to the electronic interaction with the platinum-group metals based on calculations. Our method is expected to facilitate the experimental characterization of these structurally complicated nanomaterials, which have been analyzed relying on calculations, yielding more precise pictures of real systems for investigating structure-property relationships.
我们展示了用于估计多元素合金纳米颗粒(MEA NPs)中元素选择性局部结构的物理上一致且可解释的扩展X射线吸收精细结构(EXAFS)曲线拟合分析。分析多元素系统的困难源于需要拟合的独立结构参数数量过多,远远超过了典型实验数据的信息含量。在此,通过在不同吸收边和温度下同时拟合多个数据,并基于物理合理模型施加约束来克服这一挑战。我们方法的另一个优点是可解释性;组成元素对静态和动态结构的个体贡献被明确估计为原子半径和爱因斯坦温度。该方法用于分析由铂族金属和碱金属组成的MEA NPs,这些金属具有包括原子半径、熔点和电负性等对比鲜明的性质。结果表明,局部结构反映了元素的内在性质,并且也受到它们之间相互作用的影响。与相应的单金属相比,MEA NPs中碱金属周围的局部结构显示出明显的调制,这归因于基于计算的与铂族金属的电子相互作用。我们的方法有望促进对这些结构复杂的纳米材料的实验表征,这些材料此前一直依赖计算进行分析,从而为研究结构 - 性能关系提供更精确的真实系统图像。