Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States.
Mol Cell Neurosci. 2022 Jul;121:103756. doi: 10.1016/j.mcn.2022.103756. Epub 2022 Jul 16.
A hexanucleotide (GGGGCC) repeat expansion in the first intron of the C9ORF72 gene is the most frequently reported genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The cerebellum has not traditionally been thought to be involved in the pathogenesis of C9ORF72-associated ALS/FTD, but recent evidence suggested a potential role. C9ORF72 is highly expressed in the cerebellum. Decreased C9ORF72 transcript and protein levels were detected in the postmortem cerebellum, suggesting a loss-of-function effect of C9ORF72 mutation. This study investigated the role of loss of C9ORF72 function using a C9orf72 knockout mouse line. C9orf72 deficiency led to motor impairment in rotarod, beam-walking, paw-print, open-field, and grip-strength tests. Purkinje cells are the sole output neurons in the cerebellum, and we next determined their involvement in the motor phenotypes. We found hyperactivity of Purkinje cells in the C9orf72 knockout mouse accompanied by a significant increase of the large-conductance calcium-activated potassium channel (BK) protein in the cerebellum. The link between BK and Purkinje cell firing was demonstrated by the acute application of the BK activator that increased the firing frequency of the Purkinje cells ex vivo. In vivo chemogenetic activation of Purkinje cells in wild-type mice led to similar motor deficits in rotarod and beam-walking tests. Our results highlight that C9ORF72 loss alters the activity of the Purkinje cell and potentially the pathogenesis of the disease. Manipulating the Purkinje cell firing or cerebellar output may contribute to C9ORF72-associated ALS/FTD treatment.
六核苷酸(GGGGCC)重复扩展在 C9ORF72 基因的第一个内含子中是肌萎缩侧索硬化症(ALS)和额颞叶痴呆(FTD)最常见的遗传原因。小脑传统上不被认为与 C9ORF72 相关的 ALS/FTD 的发病机制有关,但最近的证据表明其可能具有潜在作用。C9ORF72 在小脑中有高表达。在尸检小脑中检测到 C9ORF72 转录本和蛋白水平降低,提示 C9ORF72 突变具有功能丧失效应。本研究使用 C9orf72 敲除小鼠系研究了 C9ORF72 功能丧失的作用。C9orf72 缺乏导致旋转棒、横梁行走、爪印、旷场和握力测试中的运动障碍。浦肯野细胞是小脑唯一的输出神经元,我们接下来确定了它们在运动表型中的参与情况。我们发现 C9orf72 敲除小鼠的浦肯野细胞过度活跃,同时小脑中大电导钙激活钾通道(BK)蛋白显著增加。BK 与浦肯野细胞放电之间的联系通过急性应用 BK 激活剂来证明,该激活剂增加了浦肯野细胞在体外的放电频率。在野生型小鼠中体内化学遗传激活浦肯野细胞导致旋转棒和横梁行走测试中的类似运动缺陷。我们的研究结果强调,C9ORF72 缺失改变了浦肯野细胞的活性,并且可能改变了疾病的发病机制。操纵浦肯野细胞放电或小脑输出可能有助于 C9ORF72 相关 ALS/FTD 的治疗。