Suppr超能文献

C9orf72 基因敲除小鼠浦肯野细胞活性亢进和运动功能缺陷。

Hyperactivity of Purkinje cell and motor deficits in C9orf72 knockout mice.

机构信息

Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.

Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States.

出版信息

Mol Cell Neurosci. 2022 Jul;121:103756. doi: 10.1016/j.mcn.2022.103756. Epub 2022 Jul 16.

Abstract

A hexanucleotide (GGGGCC) repeat expansion in the first intron of the C9ORF72 gene is the most frequently reported genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The cerebellum has not traditionally been thought to be involved in the pathogenesis of C9ORF72-associated ALS/FTD, but recent evidence suggested a potential role. C9ORF72 is highly expressed in the cerebellum. Decreased C9ORF72 transcript and protein levels were detected in the postmortem cerebellum, suggesting a loss-of-function effect of C9ORF72 mutation. This study investigated the role of loss of C9ORF72 function using a C9orf72 knockout mouse line. C9orf72 deficiency led to motor impairment in rotarod, beam-walking, paw-print, open-field, and grip-strength tests. Purkinje cells are the sole output neurons in the cerebellum, and we next determined their involvement in the motor phenotypes. We found hyperactivity of Purkinje cells in the C9orf72 knockout mouse accompanied by a significant increase of the large-conductance calcium-activated potassium channel (BK) protein in the cerebellum. The link between BK and Purkinje cell firing was demonstrated by the acute application of the BK activator that increased the firing frequency of the Purkinje cells ex vivo. In vivo chemogenetic activation of Purkinje cells in wild-type mice led to similar motor deficits in rotarod and beam-walking tests. Our results highlight that C9ORF72 loss alters the activity of the Purkinje cell and potentially the pathogenesis of the disease. Manipulating the Purkinje cell firing or cerebellar output may contribute to C9ORF72-associated ALS/FTD treatment.

摘要

六核苷酸(GGGGCC)重复扩展在 C9ORF72 基因的第一个内含子中是肌萎缩侧索硬化症(ALS)和额颞叶痴呆(FTD)最常见的遗传原因。小脑传统上不被认为与 C9ORF72 相关的 ALS/FTD 的发病机制有关,但最近的证据表明其可能具有潜在作用。C9ORF72 在小脑中有高表达。在尸检小脑中检测到 C9ORF72 转录本和蛋白水平降低,提示 C9ORF72 突变具有功能丧失效应。本研究使用 C9orf72 敲除小鼠系研究了 C9ORF72 功能丧失的作用。C9orf72 缺乏导致旋转棒、横梁行走、爪印、旷场和握力测试中的运动障碍。浦肯野细胞是小脑唯一的输出神经元,我们接下来确定了它们在运动表型中的参与情况。我们发现 C9orf72 敲除小鼠的浦肯野细胞过度活跃,同时小脑中大电导钙激活钾通道(BK)蛋白显著增加。BK 与浦肯野细胞放电之间的联系通过急性应用 BK 激活剂来证明,该激活剂增加了浦肯野细胞在体外的放电频率。在野生型小鼠中体内化学遗传激活浦肯野细胞导致旋转棒和横梁行走测试中的类似运动缺陷。我们的研究结果强调,C9ORF72 缺失改变了浦肯野细胞的活性,并且可能改变了疾病的发病机制。操纵浦肯野细胞放电或小脑输出可能有助于 C9ORF72 相关 ALS/FTD 的治疗。

相似文献

1
Hyperactivity of Purkinje cell and motor deficits in C9orf72 knockout mice.
Mol Cell Neurosci. 2022 Jul;121:103756. doi: 10.1016/j.mcn.2022.103756. Epub 2022 Jul 16.
3
C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
Autophagy. 2021 Nov;17(11):3306-3322. doi: 10.1080/15548627.2021.1872189. Epub 2021 Feb 26.
5
Identification of C9orf72 repeat expansions in patients with amyotrophic lateral sclerosis and frontotemporal dementia in mainland China.
Neurobiol Aging. 2014 Apr;35(4):936.e19-22. doi: 10.1016/j.neurobiolaging.2013.10.001. Epub 2013 Oct 5.
6
Screening for the C9ORF72 repeat expansion in a greek frontotemporal dementia cohort.
Amyotroph Lateral Scler Frontotemporal Degener. 2018 Feb;19(1-2):152-154. doi: 10.1080/21678421.2017.1400070. Epub 2017 Nov 23.
8
Molecular Mechanisms of Neurodegeneration Related to Hexanucleotide Repeat Expansion.
Behav Neurol. 2019 Jan 15;2019:2909168. doi: 10.1155/2019/2909168. eCollection 2019.
10
The frequency of the C9orf72 expansion in a Brazilian population.
Neurobiol Aging. 2018 Jun;66:179.e1-179.e4. doi: 10.1016/j.neurobiolaging.2018.01.007. Epub 2018 Jan 31.

引用本文的文献

2
Cerebellar pathology contributes to neurodevelopmental deficits in spinal muscular atrophy.
Res Sq. 2025 Jun 23:rs.3.rs-6819992. doi: 10.21203/rs.3.rs-6819992/v2.
3
Subtle changes in Purkinje cell firing in Purkinje cell-specific knock-in mice.
Dystonia. 2025;4. doi: 10.3389/dyst.2025.14148. Epub 2025 Jan 29.
4
9
Role of C9orf72 hexanucleotide repeat expansions in ALS/FTD pathogenesis.
Front Mol Neurosci. 2024 Jan 22;17:1322720. doi: 10.3389/fnmol.2024.1322720. eCollection 2024.

本文引用的文献

1
Elucidating the Role of Cerebellar Synaptic Dysfunction in C9orf72-ALS/FTD - a Systematic Review and Meta-Analysis.
Cerebellum. 2022 Aug;21(4):681-714. doi: 10.1007/s12311-021-01320-0. Epub 2021 Sep 7.
3
Alteration of the cholinergic system and motor deficits in cholinergic neuron-specific Dyt1 knockout mice.
Neurobiol Dis. 2021 Jul;154:105342. doi: 10.1016/j.nbd.2021.105342. Epub 2021 Mar 20.
4
Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction.
Mol Neurodegener. 2021 Mar 4;16(1):13. doi: 10.1186/s13024-021-00433-8.
5
Functional Convergence of Motor and Social Processes in Lobule IV/V of the Mouse Cerebellum.
Cerebellum. 2021 Dec;20(6):836-852. doi: 10.1007/s12311-021-01246-7. Epub 2021 Mar 4.
6
Early weight instability is associated with cognitive decline and poor survival in amyotrophic lateral sclerosis.
Brain Res Bull. 2021 Jun;171:10-15. doi: 10.1016/j.brainresbull.2021.02.022. Epub 2021 Feb 23.
7
C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly.
Cell Metab. 2021 Mar 2;33(3):531-546.e9. doi: 10.1016/j.cmet.2021.01.005. Epub 2021 Feb 4.
8
Cellular and physiological functions of C9ORF72 and implications for ALS/FTD.
J Neurochem. 2021 May;157(3):334-350. doi: 10.1111/jnc.15255. Epub 2020 Dec 18.
9
Absence of Survival and Motor Deficits in 500 Repeat C9ORF72 BAC Mice.
Neuron. 2020 Nov 25;108(4):775-783.e4. doi: 10.1016/j.neuron.2020.08.009. Epub 2020 Oct 5.
10
The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia.
Brain Res Bull. 2020 Dec;165:14-22. doi: 10.1016/j.brainresbull.2020.09.011. Epub 2020 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验