Roberts J J, Walker J B
J Biol Chem. 1985 Nov 5;260(25):13502-8.
Tissues of chicks fed 5% N-methyl-3-guanidinopropionate (N-amidino-N-methyl-beta-alanine) for 12 days accumulated the following amounts of free plus phosphorylated derivatives as mumol/g, wet weight: brain, 5.5; heart, 7.3; leg muscle, 21.0; and breast muscle, 24.4. Since total creatine levels remained nearly the same in brain, N-methyl-3-guanidinopropionate-P provided brain with a supplemental reservoir of high energy phosphate. Tissues of rats fed 2% N-ethylguanidinoacetate (N-amidino-N-ethylglycine) accumulated large amounts of N-ethylguanidinoacetate-P, which has thermodynamic properties similar to creatine-P and is the kinetically most reactive synthetic phosphagen yet described. N-Ethylguanidinoacetate derivatives replaced creatine derivatives mole-for-mole, and the fraction of synthetic to total phosphagen after 19 days was 60% in heart, 54% in slow oxidative muscle, 42% in fast glycolytic muscles, and 22% in brain. N-Ethylguanidinoacetate served as a false end product co-repressor of liver arginine:glycine amidinotransferase levels in both chicks and chick embryos; N-methyl-3-guanidinopropionate and N-propylguanidinoacetate were relatively inactive. Creatinine amidohydrolase reversibly cyclized both N-ethylguanidinoacetate and N-propylguanidinoacetate with even lower Km values than for creatine derivatives, but it did not react significantly with N-methyl-3-guanidinopropionate, 3-guanidinopropionate, or 1-carboxy-methyl-2-imino-imidazolidine (cyclocreatine). Creatine amidinohydrolase also hydrolyzed N-acetimidoylsarcosine, but was relatively unreactive toward N-ethylguanidinoacetate, N-methyl-3-guanidinopropionate, 3-guanidinopropionate, and cyclocreatine. Amidinohydrolase can therefore be used to remove interfering creatine in assays of tissues for coexisting N-ethylguanidinoacetate or N-methyl-3-guanidinopropionate. Assays are now available to follow changes during metabolic stresses of any combination or all of the following phosphagens accumulated by the same tissue: creatine-P, N-ethylguanidinoacetate-P, cyclocreatine-P, N-methyl-3-guanidinopropionate-P, and homocyclocreatine-P.
给雏鸡喂食5%的N-甲基-3-胍基丙酸酯(N-脒基-N-甲基-β-丙氨酸)12天,雏鸡组织中积累的游离及磷酸化衍生物的量(以μmol/g湿重计)如下:脑,5.5;心脏,7.3;腿部肌肉,21.0;胸部肌肉,24.4。由于脑中总肌酸水平几乎保持不变,N-甲基-3-胍基丙酸酯-P为脑提供了一个高能磷酸的补充储备。给大鼠喂食2%的N-乙基胍基乙酸酯(N-脒基-N-乙基甘氨酸),大鼠组织中积累了大量的N-乙基胍基乙酸酯-P,其热力学性质与肌酸-P相似,是目前所描述的动力学上最具反应性的合成磷酸原。N-乙基胍基乙酸酯衍生物与肌酸衍生物以摩尔比进行替换,19天后,心脏中合成磷酸原占总磷酸原的比例为60%,慢氧化肌肉中为54%,快糖酵解肌肉中为42%,脑中为22%。N-乙基胍基乙酸酯可作为雏鸡和雏鸡胚胎肝脏精氨酸:甘氨酸脒基转移酶水平的假终产物共阻遏物;N-甲基-3-胍基丙酸酯和N-丙基胍基乙酸酯相对无活性。肌酸脒基水解酶能使N-乙基胍基乙酸酯和N-丙基胍基乙酸酯可逆环化,其Km值甚至比肌酸衍生物更低,但它与N-甲基-3-胍基丙酸酯、3-胍基丙酸酯或1-羧甲基-2-亚氨基咪唑烷(环肌酸)无明显反应。肌酸脒基水解酶也能水解N-乙酰亚氨基肌氨酸,但对N-乙基胍基乙酸酯、N-甲基-3-胍基丙酸酯、3-胍基丙酸酯和环肌酸的反应性相对较低。因此,在检测组织中同时存在的N-乙基胍基乙酸酯或N-甲基-3-胍基丙酸酯时,脒基水解酶可用于去除干扰性的肌酸。现在已有检测方法可追踪同一组织中积累的以下任何一种或所有磷酸原在代谢应激期间的变化:肌酸-P、N-乙基胍基乙酸酯-P、环肌酸-P、N-甲基-3-胍基丙酸酯-P和同环肌酸-P。