Suppr超能文献

用于增强6mA位点识别的具有深度可分离卷积的双分支对比网络

Dual-Branch Contrastive Network with Deep Separable Convolution for Enhanced 6mA Site Identification.

作者信息

Sun Youwei, Wang Zhifei, Zhang Ying, Song Jiangning, Yu Dong-Jun

机构信息

School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China.

Department of Computing, The Hong Kong Polytechnic University, Yuk Choi Road 11, Hong Kong 999077, China.

出版信息

J Chem Inf Model. 2025 Jul 14;65(13):7325-7335. doi: 10.1021/acs.jcim.5c01058. Epub 2025 Jun 25.

Abstract

DNA N6-methyladenine (6mA) is a pivotal DNA modification integral to various biological processes, yet its exact regulatory role in eukaryotes is still unclear and controversial due to its sparsity, limitations in detection technologies, and complex regulatory mechanisms. In this study, we develop an innovative deep learning-based model for enhancing the prediction of 6mA sites, termed DS6mA, which uses a dual-branch contrastive network with deep separable convolution to extract the key position information from DNA sequences. First, the DNA sequence is encoded into feature vectors using a one-hot encoding method; Then, dual-branch networks with identical structures are formed and trained collaboratively using random paired samples to enhance the diversity of training data and improve the generalization ability of the model. Second, the features are input into the deep separable convolution, where residual connection is introduced through pointwise convolutions to enhance the expressive power of the feature vectors. Finally, the obtained features are fed into a fully connected neural network for the ultimate prediction. To effectively evaluate the performance of the model, we expanded the scope of the data sets examined in prior research by including 11 different comprehensive benchmark data sets, achieving favorable results. In summary, the proposed DS6mA method can effectively predict 6mA sites and has promising potential for future applications.

摘要

DNA N6-甲基腺嘌呤(6mA)是一种对各种生物过程至关重要的DNA修饰,但由于其稀缺性、检测技术的局限性以及复杂的调控机制,其在真核生物中的确切调控作用仍不清楚且存在争议。在本研究中,我们开发了一种基于深度学习的创新模型来增强对6mA位点的预测,称为DS6mA,它使用具有深度可分离卷积的双分支对比网络从DNA序列中提取关键位置信息。首先,使用独热编码方法将DNA序列编码为特征向量;然后,形成具有相同结构的双分支网络,并使用随机配对样本进行协同训练,以增强训练数据的多样性并提高模型的泛化能力。其次,将特征输入到深度可分离卷积中,通过逐点卷积引入残差连接以增强特征向量的表达能力。最后,将获得的特征输入到全连接神经网络中进行最终预测。为了有效评估模型的性能,我们通过纳入11个不同的综合基准数据集扩大了先前研究中所检查数据集的范围,取得了良好的结果。总之,所提出的DS6mA方法能够有效预测6mA位点,在未来应用中具有广阔的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验