Ortis Gabriel Burato, Zapparoli Franco Camargo, Dantas Leticia Ramos, Suss Paula Hansen, Soni Jamil Faissal, Mendonça Celso Júnio Aguiar, Loesch Gustavo Henrique, Loesch Maíra de Mayo Oliveira Nogueira, Tuon Felipe Francisco
Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil.
Unidade do Sistema Neuro-Músculo-Esquelético-UNME, Complexo Hospital de Clínicas da Universidade Federal do Paraná-CHC UFPR, Curitiba 80060-900, PR, Brazil.
Antibiotics (Basel). 2025 May 31;14(6):565. doi: 10.3390/antibiotics14060565.
The increasing demand for orthopedic and neurosurgical implants has driven advancements in biomaterials, additive manufacturing, and antimicrobial strategies. With an increasingly aging population, and a high incidence of orthopedic trauma in developing countries, the need for effective, biocompatible, and infection-resistant implants is more critical than ever. This review explores the role of polymers in 3D printing for medical applications, focusing on their use in orthopedic and neurosurgical implants. Polylactic acid (PLA), polycaprolactone (PCL), and polyetheretherketone (PEEK) have gained attention due to their biocompatibility, mechanical properties, and potential for antimicrobial modifications. A major challenge in implantology is the risk of periprosthetic joint infections (PJI) and surgical site infections (SSI). Current strategies, such as antibiotic-loaded polymethylmethacrylate (PMMA) spacers and bioactive coatings, aim to reduce infection rates, but limitations remain. Additive manufacturing enables the creation of customized implants with tailored porosity for enhanced osseointegration while allowing for the incorporation of antimicrobial agents. Future perspectives include the integration of artificial intelligence for implant design, nanotechnology for smart coatings, and bioresorbable scaffolds for improved bone regeneration. Advancing these technologies will lead to more efficient, cost-effective, and patient-specific solutions, ultimately reducing infection rates and improving long-term clinical outcomes.
对骨科和神经外科植入物需求的不断增加推动了生物材料、增材制造和抗菌策略的发展。随着人口老龄化加剧以及发展中国家骨科创伤的高发病率,对有效、生物相容且抗感染的植入物的需求比以往任何时候都更加关键。本综述探讨了聚合物在医疗应用3D打印中的作用,重点关注其在骨科和神经外科植入物中的应用。聚乳酸(PLA)、聚己内酯(PCL)和聚醚醚酮(PEEK)因其生物相容性、机械性能以及抗菌改性潜力而受到关注。植入学中的一个主要挑战是假体周围关节感染(PJI)和手术部位感染(SSI)的风险。当前的策略,如载抗生素的聚甲基丙烯酸甲酯(PMMA)间隔物和生物活性涂层,旨在降低感染率,但仍存在局限性。增材制造能够制造具有定制孔隙率的定制植入物,以增强骨整合,同时允许加入抗菌剂。未来的展望包括将人工智能用于植入物设计、纳米技术用于智能涂层以及生物可吸收支架用于改善骨再生。推进这些技术将带来更高效、更具成本效益且针对患者的解决方案,最终降低感染率并改善长期临床结果。