Mougkogiannis Panagiotis, Adamatzky Andrew
Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, UK.
Biomimetics (Basel). 2025 Jun 3;10(6):360. doi: 10.3390/biomimetics10060360.
Glu-Phe-Asp (GFD) proteinoids represent a class of synthetic polypeptides capable of self-assembling into microspheres, fibres, or combinations thereof, with morphology dramatically influencing their electrical properties. Extended recordings and detailed waveforms demonstrate that microspheres generate rapid, nerve-like spikes, while fibres exhibit consistent and gradual variations in voltage. Mixed networks integrate multiple components to achieve a balanced output. Electrochemical measurements show clear differences. Microspheres have a low capacitance of 1.926±5.735μF. They show high impedance at 6646.282±178.664 Ohm. Their resistance is low, measuring 15,830.739 ± 652.514 mΩ. This structure allows for quick ionic transport, leading to spiking behaviour. Fibres show high capacitance (9.912±0.171μF) and low impedance (209.400±0.286 Ohm). They also have high resistance (163,067.613 ± 9253.064 mΩ). This combination helps with charge storage and slow potential changes. The 50:50 mixture shows middle values for all parameters. This confirms that hybrid electrical properties have emerged. The differences come from basic structural changes. Microspheres trap ions in small, round spaces. This allows for quick release. In contrast, fibers spread ions along their length. This leads to slower wave propagation. In mixed systems, diverse voltage zones emerge, suggesting cooperative dynamics between morphologies. This electrical polymorphism in simple proteinoid systems may explain complexity in biological systems. This study shows that structural polymorphism in GFD proteinoids affects their electrical properties. This finding is significant for biomimetic computing and sheds light on prebiotic information-processing systems.
谷氨酰胺-苯丙氨酸-天冬氨酸(GFD)类蛋白代表了一类能够自组装成微球、纤维或它们的组合的合成多肽,其形态对其电学性质有显著影响。长时间记录和详细的波形表明,微球会产生快速的、类似神经的尖峰,而纤维则呈现出电压的持续且逐渐变化。混合网络整合多个组件以实现平衡输出。电化学测量显示出明显差异。微球的电容较低,为1.926±5.735μF。它们在6646.282±178.664欧姆处显示出高阻抗。其电阻较低,为15,830.739 ± 652.514毫欧。这种结构允许快速的离子传输,从而导致尖峰行为。纤维显示出高电容(9.912±0.171μF)和低阻抗(209.400±0.286欧姆)。它们也有高电阻(163,067.613 ± 9253.064毫欧)。这种组合有助于电荷存储和缓慢的电位变化。50:50的混合物在所有参数上都显示出中间值。这证实了混合电学性质的出现。差异来自基本的结构变化。微球将离子捕获在小的圆形空间中。这允许快速释放。相比之下,纤维沿着其长度分布离子。这导致波传播较慢。在混合系统中,出现了不同的电压区域,表明形态之间存在协同动力学。这种简单类蛋白系统中的电学多态性可能解释了生物系统中的复杂性。这项研究表明,GFD类蛋白中的结构多态性会影响其电学性质。这一发现对仿生计算具有重要意义,并为益生元信息处理系统提供了启示。